
– 1 –

TWO APPROACHES TO INTERDISCIPLINARY
COMPUTING+MUSIC COURSES

Jesse M. Heines, Gena R. Greher, S. Alex Ruthmann, and Brendan L. Reilly
University of Massachusetts Lowell

This is the submitted version of a paper published in the December 2011
issue of IEEE Computer magazine featuring articles on Computers and the
Arts. The published version of this paper can be found at:

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6086524

The bibliographic reference for the published paper is:

Heines, J.M., Greher, G.R., Ruthmann, S.A., & Reilly, B. (2011).
Two Approaches to Interdisciplinary Computing+Music Courses.
IEEE Computer 44(12):25-32. Special Issue on Computers and the
Arts, December, 2011.

Copyright © 2011 IEEE. Personal use of this material is permitted. Permis-
sion from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistri-
bution to servers or lists, or reuse of any copyrighted component of this
work in other works.

ABSTRACT
The intersection of computing and music can

enrich pedagogy in numerous ways, from low-
level courses that use music to illustrate practical
applications of computing concepts to high-level
ones that use sophisticated computer algorithms
to process audio signals. This paper explores the
ground between these extremes by describing our
experiences with two types of interdisciplinary
courses. In the first, arts and computing students
worked together to tackle a joint project even
though they were taking independent courses. In
the second, all students enrolled in the same
course, but every class was taught by two
professors: one from music and the other from
computer science. This course was designed to
teach computing and music together, rather than
one in service to the other. This paper presents
the philosophy and motivation behind these
courses, describes some of the assignments
students do in them, and shows examples of
student work.

t’s the first day of a new semester. Two stu-
dents walk into your class. You’ve never
seen them before. You know nothing about

them. You identify them and check their majors
(primary fields of study). One is in Computer
Science, the other in Music. Which do you
assume is the more creative?

Surely, most of us would answer “the Music
major.” The general perception is that people in
the arts are more creative than those in the
sciences, particularly those in computing. But is
this truly the case?

Consider the types of learning experiences
that characterize each field. In Music, students
mainly focus on the re-creation of art. They learn
to master their instruments by studying someone
else’s original creations. The composition of ori-
ginal works is advanced study, typically pursued
by only a handful of Music majors, and typically
at the graduate level.

In Computer Science, students may initially
re-create programs that implement known algo-

I

Heines, Greher, Ruthmann, and Reilly IEEE Computer 44(12):25-32

– 2 –

rithms, but they quickly progress to writing origi-
nal programs to solve problems. Those problems
may be carefully bounded, but solutions devised
by good students come will typically exhibit a
wide range of approaches.

It is interesting to note that Music students
have to learn concepts and syntax, too. Think of
staves, notes, key signatures, accidentals, finger-
ings, etc. The difference is what they do with
these. In general, they apply what they’ve learned
to try to play a piece exactly as their teachers say
it should be played. Computer Science (CS)
students try to apply what they’ve learned to
solve a problem outlined by their teachers.

So, on reconsideration, which do you now
judge to be the more creative?

INTERDISCIPLINARY LEARNING
It is not our purpose, of course, to instigate an

argument over who is more creative than whom.
But it certainly is our purpose to break stereo-
types and to stress that when one looks at science
and engineering majors vs. their peers in the arts,
business, and other supposedly non-technical
majors, it is clear that they have much to learn
from each other. It is not much of a stretch to
assert that the technologies most of our CS gradu-
ates will be working on 5-10 ten years after they
graduate probably haven’t been invented yet.
This can make it a bit hard to decide what or how
we should teach them. We have therefore based
our work on the following postulates.

(1) Once our CS students graduate, it’s very
likely that they will never again write a program
of any significant size by themselves. Instead,
they will work in teams, and those teams will
undoubtedly be interdisciplinary. Even if certain
members of the team do not write a single line of
code, they will have a say in not only what a
program does, but also in how it is implemented.

(2) Basic skills will remain basic. An array
will always be an array, and a linked list will
always be a linked list. With all the buzz about
students wanting CS programs with concentra-

tions in game development, programmers who
succeed in that subfield will be those who under-
stand that interesting games are built on the fun-
damentals of algorithms and data structures, just
as musicians understand that interesting music is
built on the fundamentals of melody, rhythm and
harmony. Zyda states: “The game industry ...
wants graduates with a strong background in
computer science. It does not want graduates with
watered-down computer science degrees, but
rather an enhanced set of skills” [1].

(3) The need for everyone to have basic
computer skills will only increase. Jeanette Wing
writes that the basic skill in problem solving is
“computational thinking,” which “involves solv-
ing problems, designing systems, and under-
standing human behavior, by drawing on the
concepts fundamental to computer science” [2].
She feels that this “is a fundamental skill for
everyone, not just for computer scientists.” We
strongly agree, and we feel that by exposing arts
students to computational thinking within their
own field has huge potential for enhancing their
education.

(4) Everyone has something to learn from
everyone else. Virtually all jobs today involve
interdisciplinary teams, and working in such
teams almost always requires that assumptions
about one’s coworkers’ fields be abandoned.
Reflecting on one of the assignments in our
interdisciplinary course, a CS major wrote: “It
was great to work with someone as musically
(and graphically) inclined as Maria [a Music
major]. I lack a lot of knowledge about both of
those, and her ideas made very notable improve-
ments in the programming as well as the music
and graphics.” Note that the CS major speci-
fically mentions improvements to the program-
ming based on ideas from the Music major.

COMPUTING+MUSIC COURSES
To address these issues, we developed two

interdisciplinary course models that our colleague
Fred Martin dubbed synchronized and hybrid [3].

Heines, Greher, Ruthmann, and Reilly IEEE Computer 44(12):25-32

– 3 –

The synchronized model pairs two independent,
upper-level courses in different disciplines and
requires interdisciplinary teams of students to
complete a joint project collaboratively. The
hybrid model is a single course taught by two
professors from different disciplines, with both in
the classroom throughout the semester.

These are, of course, but two of myriad
models employed in interdisciplinary computing+
music courses. To put our work in perspective,
we took an informal look at 52 courses at 40
colleges and universities that cover computing
through music or music through computing.
Some of these were identified by attendees at a
March 2011 workshop on this topic under the
auspices of the ACM SIGCSE Music Committee
[4] and sponsored by the NSF-funded LIKES
project [5] (www.likes.org.vt.edu). Additional
courses were found by the student researcher on
our team, who searched the web for syllabi that
combined computing and music in interdisci-
plinary courses.

Our search criteria specifically excluded
audio recording and production courses that have
the shaping of sound through electronics and sig-
nal processing as their primary objectives. These
courses fall at the intersection of computing and
music, to be sure, but they focus on using tech-
nology to achieve desired sounds, rather than
teaching computational and musical concepts
together. With those caveats in mind, Table 1
presents general information about the courses
we discovered and gives an overall picture of the
landscape.

Table 2 presents the content of the 52
courses, as best we could glean from their posted
syllabi. This is an inexact measure, to be sure, but
it still gives a somewhat reasonable view of the
field. (The Ns in each section do not add up to 52
and the percentages do not total 100% because
some entries fall into more than one category.)

Where Our Work Fits
One can see that there are indeed large ranges

of courses offered, subjects covered, perspectives

taken, teaching styles employed, and software
systems used. Reviewing these data and reflect-
ing on our familiarity with some of the people
who teach these courses, the following overall
picture emerges.

 At the upper end of the curriculum, virtual-
ly all courses that cover computing+music
are advanced offerings by Music depart-
ments. We know of no upper-level CS
courses dedicated to addressing issues faced
by musicians (although of course there may
be some unknown to us).

 Courses and research at the upper end
require deep understanding of both compu-
tation and music. (See, for example, the
algorithmic composition work by Edwards
[6] and Brown and Sorenson [7].)

 At the lower end of the curriculum, music is
typically used to demonstrate or to intro-
duce concepts. This is music in service to
computing, not music integrated with com-
puting. (See, for example, the media com-
putation work by Guzdial and Ericson [8].)

Table 2. Computing+Music course offerings.
Listing Department N %

Music 40 77%

Computer Science 9 17%

Co-Listed 3 6%

Type of Instruction N %

Single Instructor 28 54%

Team Taught 8 15%

(unable to identify) 16 31%

Student Level Targeted N %

1st- & 2nd-year Undergraduates 21 40%

3rd- & 4th-year Undergraduates 19 37%

Graduate Students 5 10%

Multiple Levels 7 13%

Heines, Greher, Ruthmann, and Reilly IEEE Computer 44(12):25-32

– 4 –

Table 2. Computing+Music course content.
Disciplines Covered N %

Sound/Audio 37 71%

Computer Science 36 69%

Music (composition) 22 42%

Music (theoretical) 12 25%

Media 5 5%

Primary Focus N %

Composition 31 60%

Sound Synthesis 27 52%

CS (introductory) 18 35%

Sound Processing 17 33%

CS (specialized) 12 23%

Music Theory 7 13%

Interactive Media 1 2%

Software Used N %

Max/MSP 11 21%

Audacity 4 8%

Processing 4 8%

SuperCollider 3 6%

ChucK, Disklavier, Pro Tools,
Reason

2
each

4%
each

Audition, Garage Band,
MATLAB, Peak, PureData,
Reaktor, Scratch, Sibelius

1
each

2%
each

Our work attempts to fill some of the gaps

between these types of courses by providing
integration of computing+music at a high concep-
tual level. Our synchronized course targets mid-
to upper-level Music and CS majors with the
intent of furthering students’ knowledge of both.
Our hybrid course is a General Education
(“GenEd”) offering open to all students in the
university. It attempts to provide an understand-
ing of where computing and music interact, at a
level that is accessible to students without deep
knowledge of one or the other.

Thus, our work is at both ends of the instruc-
tional spectrum. The remainder of this paper
describes our courses, the topics they cover, and
the types of assignments our students complete.

GUI PROGRAMMING + MUSIC METHODS
One of the ways to get started in interdisci-

plinary teaching and learning is to connect the
students in two existing courses through a joint
project. Administratively, this is a “low-hanging
fruit” approach, because it doesn’t involve
getting a new course approved or making any
changes to the course catalog. All that’s needed
are professors who agree to collaborate with each
other to build an interdisciplinary project into
their courses.

In our case, the CS professor teaches a
project-based course in graphical user interface
(GUI) programming, which fit nicely with a
project-based course on teaching methods taught
by the Music professors. After reviewing the
projects that we assign in our respective courses,
we decided to make our initial foray into interdis-
ciplinary teaching using a “Found Instruments”
project that has been used in Music for years.

The Music Assignment
For the musicians, the purpose of our assign-

ment is similar to one described by Hugill [9]: “to
strip away previous ideas of ‘musicianship,’ [by]
reevaluating the sounding properties of objects,
how they may be made into instruments, how
playing techniques might be developed, and how
music may be created as a result.” Here’s what
Music students are asked to do:

(1) Using only household object(s), create a
musical “instrument” that can produce several
different pitches and/or timbres. Your instrument
must be able to produce several different types of
sounds, or sounds with several different charac-
teristics.

(2) Create a composition for your instrument
that employs a specific musical form of your
choice. It need not be long. A 2-3 minute piece is
sufficient, but it must include distinct sections

Heines, Greher, Ruthmann, and Reilly IEEE Computer 44(12):25-32

– 5 –

that give it form. That is, your composition must
include distinctive opening, middle, and closing
sections.

(3) Devise a system of creative notation that
others will be able to understand well enough to
perform your composition. Your notational sys-
tem should not resemble traditional musical
notation in any way.

(4) Bring your instrument and notated com-
position to class. Come prepared to explain your
work and to perform your piece.

To achieve camaraderie and pique interest,
the CS majors are also given this assignment. Our
experience is that the instruments “found” by the
CS students exhibit just as much novelty as those
of their Music counterparts. When we get the
students from the two courses together, we do a
number of things to build community, including
having them jam on their instruments in mini-
ensembles. Again, the CS students “get into” this
project just as much as the Music students, and
the resultant “music” is, well, “interesting” to say
the least!

Another class activity has students try to play
each other’s found instruments from the nota-
tions created for those instruments. We have
them do this without first hearing the original
composer play the piece and without any verbal
explanation of the notational system. This is a
good test of the communicability of the notation
by itself, and it opens up a number of avenues for
discussion of human factors. As an example of
this activity, please see www.youtube.com/
watch?v=IJuGoYnCxSs.

The Computing Assignment
So how did the Found Instruments project

connect to computing? Through the creative nota-
tion. Here’s how it worked.

(1) We introduced CS students to standard
music notation software using Finale Notepad
(www.finalemusic.com/NotePad) and Noteflight
(www.noteflight.com).

(2) We assigned CS and Music teams and
charged the CS students with creating a music
notation program for the notation devised by their
Music partners.

(3) We scheduled several joint classes in
which the Music students could work with the CS
students on the programs’ designs, review the CS
students’ works in progress and offer comments
and suggestions for improving the programs, and
finally act as usability test subjects on the
finished products.

Some of the programs produced as a result of
these collaborations and the lessons learned from
them were truly astounding. We describe below
one of the best.

Mike, a music student, used his jacket as a
found instrument, creating sounds by slapping it,
rubbing it, working the zipper, etc. (see Figure 1).
He then created a piece satirically named Eine
Kleine Jacket Music. An excerpt from Mike’s
creative notation is shown in Figure 2, and
performances of Mike’s piece first by a Chase, a
CS student, and then by Mike himself are posted
at www.youtube.com/watch?v=iD4dEZOTiIg.

Figure 1. Mike playing his jacket as a
“found instrument.”

Heines, Greher, Ruthmann, and Reilly IEEE Computer 44(12):25-32

– 6 –

Figure 2. Mike’s notation for his composition.

Figures 3-6 walk through part of Mike’s part-
ner Chris’s composition program to demonstrate
the CS concepts and skills involved in developing
such a program and one important lesson that
Chris specifically learned from this project.

Figure 3 shows Chris’s composition program
after a few icons from the tool palette on the left
have been placed onto the right- (R) and left-hand
(L) staves in the composing area by either drag-
ging-and-dropping them or double-clicking them
in the tool palette.

Figure 3. State 1 of Chris’s music composition
program for Mike’s jacket notation.

Figure 4 shows the program with the insertion
cursor positioned between the 6th and 7th icons
on the left-hand staff, as indicated by the thick
vertical bar. If an icon in the tool palette is
double-clicked at this point, that icon would be

inserted to the right of the insertion cursor, which
is to the left of the last hand icon on staff L.

Figure 4. State 2 of Chris’s program with the
insertion cursor positioned between the 6th and
7th icons on the left-hand staff.

In Figure 5, the Backspace key has just been
pressed, and the blank (or “rest”) icon pointed to
by the arrow cursor in Figure 4 has disappeared.
The issue is that the thick vertical bar insertion
cursor has also disappeared, leaving users to
wonder where the insertion point is. In most
editors, the insertion point would not change.
That is, if an icon in the tool palette is double-
clicked at this point, that icon would still be
inserted to the left of the last hand icon on staff L.

Figure 5. State 3 of Chris’s program after the
icon pointed to by the arrow cursor in Figure 4
has been deleted.

But unfortunately, this is not what happens.
Instead, when the “scratch” icon is double-
clicked it is inserted at the beginning of the staff,
as shown in Figure 6. This may be fully logical to
a programmer who has implemented the compos-

tool
palette

right-hand staff

left -hand staff

insertion

cursor

Heines, Greher, Ruthmann, and Reilly IEEE Computer 44(12):25-32

– 7 –

ition area as a pair of linked lists, but it is not at
all logical to someone used to working with any
sort of text editor.

Figure 6. State 4 of Chris’s program after the
“scratch” icon in the tool palette (indicated by
the arrow cursor) has been double-clicked to
insert it into the composition.

When the anomaly was pointed out to Chris,
he immediately recognized the problem and said,
“I can’t believe I didn’t notice that.” But that’s
exactly why usability tests are needed. Program-
mers are often “too close” to their work to see
even the most obvious of user interface issues.
Teaching this point in a lecture setting requires
students to mentally connect theory and practice.
When it is learned from a peer while testing one’s
own software, the connection is far more concrete
and the lesson is learned at a deeper level that is
more personal and, therefore, more effective.

Thus, not only the different, but also the fresh
views of students in other disciplines can teach
valuable lessons to our computing students.
Likewise, for Music majors, helping non-musi-
cians translate their musical concepts into com-
puter programs can shed light on the clarity of
their thinking—or lack thereof. Such reciprocal
learning [10], in which students learn from each
other instead of just from the professors,
exemplifies one of the very best characteristics of
interdisciplinary courses (see Figure 7).

Figure 7. Music and CS students working on the
design of a composing program.

SOUND THINKING
Our synchronized courses worked well at the

upper end of our curricula, but we also wanted to
work at the lower end so that we could introduce
more students to the benefits of interdisciplinary
courses. Following the pioneering work of Yanco
et al. in combining Art and Robotics at our own
university [11], we developed a new hybrid
course that could be offered to all students in the
university. This is Sound Thinking (please see
soundthinking.uml.edu).

There are two critical characteristics about the
way in which Sound Thinking was put into the
course catalog that contributed significantly to its
success. First, it was co-listed in both the Music
and CS departments. Second, we applied for and
were granted General Education (“GenEd”) sta-
tus for the course. Arts students who take it
register using the CS Dept. number and receive
Science & Technology GenEd credit. Science
students register using the Music Dept. number
and receive Arts & Humanities credit. These
characteristics were essential to achieve the criti-
cal number of registrations needed for the course
to run, especially with two professors present at
all class meetings.

Revisiting Found Instruments
We used the Found Instruments project at the

beginning of Sound Thinking, too, but we took it

 scratch icon

Heines, Greher, Ruthmann, and Reilly IEEE Computer 44(12):25-32

– 8 –

in another direction. After students created their
instruments and notations, we had them record
the sounds their instruments could make and then
used those as an introduction to sound editing
with Audacity as explained below.

Eric, a CS student, created what he called a
“lever drumitar,” shown in Figure 8. He strung a
guitar string across the opening of a cup, secured
it with strong tape, and rigged up a carabiner to
use as a lever for changing the cable’s tension.
This allowed him to produce different sounds
when he strummed the cable with a pop top.

Figure 9 shows the original notation that Eric
created for his instrument. Each row represents
an action. If the square in the second column is
filled in, the string is to be strum. A V in the third
column indicates that the time duration is to be
shortened. The length of the line in the fourth
column indicates the position of the carabiner.

For the next assignment, students recorded
the various sounds their found instruments could
generate and loaded them into Audacity. They
then created original compositions by looping
and combining those sounds. To hear Eric’s
original lever drumitar sounds and his remixed
composition, please see www.youtube.com/
watch?v=_zA_hn_4T8k.

Figure 8. Top view of the lever drumitar.

Figure 9. Notation for playing the lever
drumitar.

Extending Found Instruments
We weren’t done with the sounds the students

created. For the next assignment, students loaded
their sounds into Scratch [12] and sequenced
those sounds by chaining

blocks together. Initially, they just created linear
chains like that shown in Figure 10. When they
wanted to repeat a sound or just use it again, they
simply dragged in another block and selected the
sound they wanted it to play.

Figure 8. A Scratch program to
play a straight sequence of sounds.

With a bit of experimentation, all students
were able to create Scratch programs that used
looping as shown in Figure 11. With a bit more
instruction and encouragement, most were able to
incorporate variables, nested loops, and condi-
tional structures as shown in Figure 12, as well.

Heines, Greher, Ruthmann, and Reilly IEEE Computer 44(12):25-32

– 9 –

Figure 11. A Scratch program to play a
sequence of sounds using loops.

Figure 12. A Scratch program to play a
looped sequence with conditionals.

Finally some students, with help from each
other rather than from the professors—which
indicates true student involvement in the course
and is the best way for them to learn: by teaching
others—were able to figure out how to do more
advanced things, such as playing two or more
sounds simultaneously using the

and

and its complementary

blocks, leading to interesting and sometimes
quite complex discussions about synchronization.

There are a lot of CS concepts at play here,
and we use that word “play” intentionally. The
Scratch development group at the MIT Media
Lab is called the Lifelong Kindergarten Group
for good reason. The ability to learn through
thoughtful play that involves the use of creativity
is at the heart of what we are trying to achieve.
The music and arts students learn about com-
puting, to be sure, but so do the computer science
and engineering students.

Using a visual programming environment like
Scratch forces CS majors—who have been
“brought up” on languages like C/C++ and Java
and text-based coding environments—out of their
comfort zone. It is amazing how many of them
stumble when they discover that a Scratch loop
doesn’t provide access to its index (counter)
variable. It’s pretty easy to implement a counter
themselves, but solving of this problem requires a
bit of creative thinking. In addition, explaining
what they’re doing to their non-technical peers
not only increases their partners’ understanding,
but solidifies their own, as well. As the saying
goes, “If you really want to learn something,
teach it to someone else.”

Sound Thinking builds on the Found Instru-
ments project and its related assignments by
introducing MIDI concepts and generating music
using Scratch’s various “sound” blocks (see
Figure 13). We have created a number of differ-
ent types of assignments using these blocks,
including having students create a composition
based on only major 2nds and perfect 5ths (to
break Music majors out of their Western music
comfort zone), writing algorithms to transpose
lists as either MIDI values or interval deltas into
different keys, and coding multiple parts that
need to be carefully synchronized.

Heines, Greher, Ruthmann, and Reilly IEEE Computer 44(12):25-32

– 10 –

These and other assignments are described in
detail at soundthinking.uml.edu. Through these
assignments, not only do Music majors learn
about computing, but CS students simultaneously
learn about music.

INTERDISCIPLINARY TEACHING
One measure of the success of our work is the

lasting effect it has on students. This is difficult
to assess, but the number of students who come
back to us semesters later to tell us how they
applied the concepts they learned in a different
context gives us confidence that at least some of
the activities we developed resulted in lasting
effects. We are currently working to devise more
rigorous evaluations to substantiate this belief.

Figure 13. Blocks available from the
Scratch Sound panel.

In addition, the effects of our interdisciplinary
experiences were not limited to the students. The
professors also learned from each other, not only
about discipline-specific content, but also about
teaching and pedagogy. As a result of the
collaboration, the lead author felt totally revital-
ized by the experience and made significant
changes to the way he teaches even his regular
CS courses. The NSF evaluator of our Performa-
matics project wrote in her final report:

One CS faculty member ... changed his
approach to teaching significantly in some
situations, assigning more open-ended pro-
jects, a change well received by students.
... Change in faculty is an essential but
often overlooked element of institutional
and curricular change.

The professors’ experiences in teaching with
each other were so positive that they continued to
do so even after the original NSF funding
expired. Then In 2011 we were awarded a grant
from the NSF TUES program to disseminate our
work in a series of workshops for interdisci-
plinary pairs of professors. The first of these free
workshops will be offered on June 21-22, 2012.
Faculty interested in attending are invited to visit
www.performamatics.org for further information
and to apply.

Our explorations of ways to bridge the gaps
in computing+music education are really just
beginning. We believe that there are many more
ways to introduce arts majors to computing and
science and engineering majors to the arts, and
that our approaches offer effective ways to work
toward that goal in an undergraduate institution.
We are constantly working to improve our
current approaches and to extend our work into
more advanced offerings that move into live
coding [13-15] and text-based music coding
environments such as SuperCollider, Impromptu,
Processing, and Max/MSP.

Heines, Greher, Ruthmann, and Reilly IEEE Computer 44(12):25-32

– 11 –

ACKNOWLEDGMENTS
This work is supported by National Science

Foundation Awards No. 0722161 and 1118435.
In addition to the authors, Dr. Fred Martin and
Dr. Sarah Kuhn of the Univ. of Massachusetts
Lowell and Dr. Scott Lipscomb of the Univ. of
Minnesota are members of these project teams.
Dr. Lipscomb thoroughly review of an early draft
of this paper and provided significant suggestions
for improvement. Any opinions, findings, and
conclusions or recommendations expressed in
this material are those of the authors and do not
necessarily reflect the views of the NSF. Please
see www.performamatics.org for further infor-
mation, including how to apply to attend our
NSF-sponsored workshop.

AUTHOR BIOS
Jesse Heines is a Professor of Computer Science
at UMass Lowell with a strong interest in music
and its power to interest students in computing.
He was PI on the original NSF CPATH Perfor-
mamatics award and is PI on the current NSF
TUES award. Gena and Jesse are writing a book
on interdisciplinary teaching that is currently
under contract with Oxford University Press.

Gena Greher is an Associate Professor of Music
Education at UMass Lowell. Her research
focuses on creativity and listening skill develop-
ment in children, and examining the influence of
integrating multimedia technology in urban
music classrooms. Before entering the education
profession, Gena was a music director in adver-
tising, working for several multinational agencies
producing jingles and underscores for hundreds
of commercials.

S. Alex Ruthmann is an Assistant Professor of
Music Education at UMass Lowell. Beginning as
a middle school music teacher and computational
musician, he now teaches courses at the inter-
section of music education and arts computing.
Alex’s research explores social/digital media
musicianship and creativity, as well as the devel-
opment of technologies for music learning.

Brendan Reilly is an undergraduate Computer
Science major at UMass Lowell. He has played
bass since grade school, participating in every
musical group available to him.

REFERENCES
1. M. Zyda, "Computer Science in the Concep-

tual Age," Comm. of the ACM, vol. 52, no.
12, 2009, pp. 66-72.

2. J. M. Wing, "Computational Thinking,"
Comm. of the ACM, vol. 49, no. 3, 2006, pp.
33-35.

3. F. Martin, G. R. Greher, J. M. Heines, J.
Jeffers, H.-J. Kim, S. Kuhn, K. Roehr, N.
Selleck, L. Silka, and H. Yanco, "Joining
Computing and the Arts at a Mid-Size
University," Jrnl. of Computing Sciences in
Colleges, vol. 24, no. 6, 2009, pp. 87-94.

4. R. Beck and J. Burg, "Report on the LIKES
Workshop on Computing and Music," ACM
SIGCSE Music Committee, 2011.

5. W. Chung, E. Fox, S. Sheetz, and S. Yang,
"LIKES: Educating the Next Generation of
Knowledge Society Builders," in Americas
Conf. on Information Sys-tems, San
Francisco, CA, 2009.

6. M. Edwards, "Algorithmic Composition:
Computational Thinking in Music," Comm.
of the ACM, vol. 54, no. 7, 2011, pp. 58-67.

7. A. R. Brown and A. Sorensen, "Interacting
with Generative Music through Live
Coding," Contemporary Music Review, vol.
28, no. 1, 2009, pp. 17-29.

8. M. Guzdial and B. Ericson, Introduction to
Computing and Programming in Java: A
Multimedia Approach. Upper Saddle River,
NJ: Prentice Hall, 2005.

9. A. Hugill, The Digital Musician. New York,
NY: Routledge, 2008, p. 255.

10. H. F. Silver, R. W. Strong, and M. J. Perini,
Strategic Teacher: Selecting the Right
Research-Based Strategy for Every Lesson:
Assoc. for Supervision & Curriculum
Development. Chapter 13, 2008.

11. H. A. Yanco, H. J. Kim, F. G. Martin, and L.
Silka, "Artbotics: Combining Art and
Robotics to Broaden Participation in Com-
puting," in AAAI Spring Symposium on
Robots and Robot Venues: Resources for AI
Education, Stanford, CA, 2007.

Heines, Greher, Ruthmann, and Reilly IEEE Computer 44(12):25-32

– 12 –

12. M. Resnick, J. Maloney, A. Monroyhernán-
dez, N. Rusk, E. Eastmond, K. Brennan, A.
Millner, E. Rosenbaum, J. Silver, B. Silver-
man, and Y. Kafai, "Scratch Programming
for All," Comm. of the ACM, vol. 52, no. 11,
2009, pp. 60-67.

13. A. Brown. (2011, 11/7/2011). Generative
Structures Performance. Available: vimeo.
com/26193440

14. A. Ruthmann. (2011, 11/7/2011). Live
Coding & IchiBoard-Enhanced Perfor-
mance. Available: www.youtube.com/watch?
v=qehSEroHn4E.

15. A. Sorenson and A. Brown. (2007,
11/7/2011). aa-cell Live Coding at The Loft
1. Available: www.youtube.com/watch?
v=OBt4PLUv2q0.

