
Teaching Computational Thinking through
Musical Live Coding in Scratch

Alex Ruthmann
Dept. of Music

Univ. of Massachusetts Lowell
Lowell, MA 01854
1-978-934-3879

Alex_Ruthmann@uml.edu

Jesse M. Heines
Dept. of Computer Science

Univ. of Massachusetts Lowell
Lowell, MA 01854
1-978-934-3634

heines@cs.uml.edu

Gena R. Greher
Dept. of Music

Univ. of Massachusetts Lowell
Lowell, MA 01854
1-978-934-3893

Gena_Greher@uml.edu

Paul Laidler
Student, Dept. of Computer Science

Univ. of Massachusetts Lowell
Lowell, MA 01854
1-978-934-3634

plaidler@gmail.com

Charles Saulters II
Student, Dept. of Music

Univ. of Massachusetts Lowell
Lowell, MA 01854
1-978-934-3634

kingd615@hotmail.com

ABSTRACT
This paper discusses our ongoing experiences in developing an
interdisciplinary general education course called Sound Thinking
that is offered jointly by our Dept. of Computer Science and Dept.
of Music. It focuses on the student outcomes we are trying to
achieve and the projects we are using to help students realize
those outcomes. It explains why we are moving from a web-based
environment using HTML and JavaScript to Scratch and discusses
the potential for Scratch’s “musical live coding” capability to
reinforce those concepts even more strongly.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education — computer science education, curriculum.

General Terms
Design, Languages

Keywords
Performamatics, Scratch, computer science education, interdisci-
plinary courses, musical live coding, generative music, curri-
culum design.

1. PERFORMAMATICS BACKGROUND
Performamatics is a series of courses intended to attract students
to computer science (CS) by tapping their inherent interest in
performance and the arts. Toward that end, two CS professors
have teamed with five Music, Theater, and Art professors to offer
both introductory and advanced courses where assignments
designed to reinforce CS concepts center around applications in

the Arts. These courses are in the spirit of pioneering work done
by Cooper, Dann, & Pausch [3], Guzdial [6], and Yanco et al.
[15], and have been described in many other papers and
presentations [5, 7, 8, 9, 12]. Readers are also referred to
www.performamatics.com for links to online materials.

The most successful Performamatics courses to date (based on
enrollment and student feedback) have clearly been the introduc-
tory ones. These are general education (GenEd) courses co-listed
in two departments, allowing CS majors to earn Arts & Humani-
ties GenEd credit while Arts majors earn Science & Technology
GenEd credit. Tangible Interaction Design is a collaboration be-
tween CS and Art, while Sound Thinking, the course on which
this paper focuses, is a collaboration between CS and Music.

2. SOUND THINKING
One of the hurdles in getting our first offering of Sound Thinking
approved for dual GenEd credit was to convince the GenEd
committee that Music majors would learn something about tech-
nology and CS majors would learn something about music. The
committee feared that if project teams had both CS and Music
majors, each group would naturally navigate to its own discipline
and there might be relatively little true cross-over. We therefore
established the following behavioral objectives for all students.

Upon completion of this course, students should be able to:
1. Identify properties of sound and describe the organization of

sound into music.
2. Design a simple notation system and describe the differences

between formal and informal notation.
3. Distinguish between analog and digital audio.
4. Discuss the basic differences between various audio file

formats and sound compression techniques.
5. Create a web-based computer program that plays a music file.
6. Create a web-based computer program that plays a user-

definable sequence of music files.

In the first half of the semester, students created compositions for
“found” instruments, invented notations for those instruments,
recorded the instruments’ sounds, manipulated those sounds with

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SIGCSE’10, March 10-3, 2010, Milwaukee, Wisconsin, USA.
Copyright 2010 ACM 978-1-60558-183-5/09/03...$10.00.

audio editors, and remixed and recomposed the sounds into
original compositions. In the second half, they created webpages
that incorporated music, used a JavaScript Application Program-
mer Interface (API), and developed interactive web applications
in which music played an integral part. Looking back, we see that
objectives 1, 2, 5, and 6 held the most interest for students, and
that’s where we spent most of our class time.

Before the course was taught, there was much discussion among
the Performamatics faculty about the development platform to be
used for programming assignments. A CS professor said, “The
Music majors will cringe if you make them code. You’ve got to
use a visual programming environment.” But a Music professor
strongly disagreed, saying “One of our goals is to have them over-
come any fear they have of code. We want them to see real code.”
Given that we thought students would enjoy creating webpages
that they could share with their friends, we therefore chose
Dreamweaver as our development platform, because it allowed
viewing the page layout and its underlying code simultaneously.
This helped students easily see the cause-and-effect relationship
between the code and its result. We taught the basics of under-
lying HTML and JavaScript (with a custom API to play sounds
and sound files), and only one of the 13 students had any real
trouble doing the webpage development assignments.

On the contrary, most of the Music majors were very technically
savvy and the post course student evaluations revealed that they
wanted to know more about what was “under the hood.” They
enjoyed referring to the CS professor on the faculty team as a
“magician” (because he could almost always make their pages do
what they wanted when their CS partners were stumped), and they
suggested that when the next the course is taught, the program-
ming should be spread throughout the semester rather than con-
fined to the second half.

We are now revising Sound Thinking for its next offering. With
the help of students funded through a Research Experience for
Undergraduates supplement to our NSF CPATH grant, we inves-
tigated a number of other platforms for use in the course. We have
settled on Scratch [10, 11]. The remainder of this paper discusses
why we feel that Scratch is an appropriate platform for teaching
computational thinking through music.

3. MAKING MUSIC WITH SCRATCH
Scratch has the ability to generate and play sounds using various
components in its Sound category. But if one wants to begin
making music with more than one sound line in Scratch, one
needs to address the issue of synchronization.

This issue is best addressed once students are familiar with loop-
ing, an essential concept in the implementation of many musical
models. As students begin working with models where multiple
voices are layered, it becomes necessary to maintain the tempo
using the Scratch timer. Figure 1 shows a loop that will play a
hand clap (MIDI drum instrument #39) every quarter of a beat.
However, this example will not have a steady tempo, and if it was
used to layer multiple voices, each would eventually fall out of
synchronization.

The Scratch timer offers a way to address this problem. We first
determine how many seconds our hand claps should be apart and
then use the Scratch timer to control when each clap should occur.
Figure 2 shows a more complex loop that will remain synchro-

nized with the tempo regardless of the number of iterations
performed. Each iteration waits until the Scratch timer reaches the
value stored in variable now. This variable holds the time when a
hand clap should sound. A message is then broadcast to play the
hand clap. This ensures that the loop will complete and return to
the “wait until” statement before the next hand clap needs to be
played by delegating the actual playing to a “when I receive”
event handler. The value of variable now is then changed to
contain the time at which the next hand clap should be played.
The Scratch timer ensures that the hand claps remain in tempo.

Note that in addition to synchronization, many other computa-
tional thinking concepts are touched upon by this example.
• looping
• initialization
• use of variables
• changing variables algorithmically
• modularization
• event processing

Figure 1. A hand clap loop.

Figure 2. Hand clap loop synchronized via the Scratch timer.

4. FROM CODE TO MUSIC
Once students understand basic note and sound generation in
Scratch and can implement synchronization, more musical, gener-
ative algorithms for creating and manipulating sequences of notes
can be explored.

One possible starting point is to use the “forever” loop to generate
random melodies constrained by lower and upper boundaries as
shown in Figure 3. In this example, random musical pitches from

middle C (MIDI note #60) and the C above that (MIDI note #72)
are chosen and played for half a beat. Because the “play note”
function is surrounded by a “forever” loop, Scratch continues to
generate notes until the Scratch stop button () is pressed.

Figure 3. Code for a random melody by boundary constraints.

The fact that Scratch also functions as a live interpreter/compiler
makes things more interesting. This feature allows the boundaries
of the random pitches as well as the duration of the sound played
to be manipulated in real time through “musical live coding” [2,
13, 14] without disrupting the sounds being generated. That is, the
resultant melody can be changed in real time by adjusting the
upper and lower bounds of the random function and changing the
duration value for the beat without stopping program execution.

The code in Figure 3 can be expanded to generate a random
melody from notes provided in a pitch set as shown in Figure 4.
This code implements a Scratch “list” that contains a Pentatonic
(five note) pitch set. It then selects a random note from that pitch
set and adds a pitch offset (MIDI note 38). In a real-time perfor-
mance, the pitch could be changed by manipulating the offset to
move the randomly chosen notes higher and lower through the
pitch register. Additionally, through the use of the “pick random”
function, the bounds of the notes chosen from the Pentatonic pitch
set could be further constrained. For example, if we wanted to
choose only the 2nd, 3rd, or 4th note of the set, we could change
the function to “pick random 2 to 4.” This technique enables live
coders to create more variety in the resultant musical output.

In most music, melodies do not move by random intervals. If one
has a large pitch set, random intervals could result in very large
leaps from one pitch to the next. A more natural sounding melody
can be generated by implementing a “random walk” algorithm to
change subsequent pitches as shown in Figures 5a and 5b. This
results in a more musical melody by constraining the interval
movement between -4 and +4 of the prior pitch. This approach
also enables the melody to move freely across the MIDI pitch
spectrum rather than to be constrained by the length of the pitch
set as was the case in the prior examples.

Eventually, these techniques can be expanded to model the musi-
cal styles of various composers. Our initial explorations have
centered on generating music in the style of Arvo Pärt and Philip

Figure 5a. Code for a melody via a “random walk” algorithm.

Glass. Figure 6 shows a small part of a
larger algorithm inspired by Arvo Pärt’s
Stabat Mater [1]. This example iterates
through the AeolianPitchSet list (organized
as a descending minor scale) to select
pitches and then chooses random rhythm
values from the RhythmSet list. The values
of the RhythmSet list were derived from an
aural analysis of the Stabat Mater and
weight the probability of selecting a whole
note twice that of selecting a half note. In
the full algorithm, this code is duplicated
twice to create three multithreaded musical
parts that are triggered via keystrokes. The
addition of human control to starting and
stopping threads enables the performer to
create dynamic variations in musical form
and texture by starting and stopping sections
of the overall code.

In addition to the live manipulation of lists, variables, and offsets
shown in prior examples, Figure 6 also enables the selection of
multiple pitch set lists, modification of the direction in which the
list is iterated, and the ability to choose randomly or to isolate and
repeat pitch values. Additional functions from the Scratch Sound
and Numbers menus can be added, removed, and manipulated in
real time to generate more musical control and expression. For
example, a “change volume by x” function could be added to
create changes in musical dynamics or to realize dynamic fading
in or fading out of sections of the code. Additionally, a “change
tempo by x” function could be inserted at various points to slow
down or speed up the tempo. This could be set to a discrete value
or by a mathematical function as shown in Figure 7.

Performing effective real-time manipulation of code (musical live
coding) to create and shape generated music requires both musical
and computational understanding. From a musical perspective,
one needs to understand how the ongoing, generative music
should sound. From a computational perspective, one needs to
understand how the code can be adjusted and manipulated in real
time to achieve the aural and musical changes and outcomes one

Figure 4. Code for a melody from pitch and rhythm set lists.

Figure 5b.

Interval list for
use with the

“random walk”
algorithm.

Figure 6. Melodic code inspired by Arvo Pärt's Stabat Mater.

Figure 7. Examples of built-in Scratch functions

well suited to musical live coding.

desires. These are advanced skills, but they can be learned
through experimentation and exploration that is both educational
and fun. Scratch provides a unique, easy-to-learn platform that
enables musical live coding by allowing nearly all aspects of the
code to be adjusted in real time. Students can then share and
showcase their work in live or pre-coded performances, which is
the essence of Performamatics.

5. ADDING A TANGIBLE INTERFACE
As the course develops,
we plan to integrate tan-
gible computing using
IchiBoards [4] (Figure
8). Using these devices’
live sensing capabili-
ties, we can implement
gestural musical input
and design new instru-
ments to perform mu-
sical algorithms imple-
mented in Scratch.

Figure 9 shows a simple
program that converts
an IchiBoard into a
musical instrument. A
“forever” loop is used to
enable continuous live
sensing of the board’s
button and slider sen-
sors. When the button is
pressed, the slider value
is read and a note is played whose pitch corresponds to that value.
Computational thinking comes into play because the IchiBoard’s
slider returns values between 0 and 100. To convert those values
to a 7-note whole tone musical scale in which each interval is two

equal half-steps apart, the value returned by the slider is combined
with a copy of itself on which a modulus 2 operation has been
applied. This ensures that when the slider is moved, the pitch of
the note being played always jumps by a whole step rather than a
half step. With the beat value set to 0.01, a continuous stream of
pitches sounds when the button is pressed. The result is a surpris-
ingly expressive instrument with which the user can establish a
rhythm through interaction with the button and play gestural pitch
sweeps through manipulation of the slider.

Figure 9. Code for a simple IchiBoard musical instrument.

The previous example only takes advantage of two of the eight
possible sensor inputs on the IchiBoard. More complex interface
configurations and Scratch code are currently in development that
will enable more interesting musical performances and live
coding demonstrations of computational thinking.

The integration of IchiBoards as an interface for tangible com-
puting enables discussion of CS hardware concepts such as:
• What is a device?
• What is a sensor?
• What is a signal, and how is it detected in software?
• What is an event, and how is it detected in software?
• What different types of events are triggered by various

devices (real and virtual)?

Integrating physical computing with Scratch’s graphical coding
environment provides a unique platform for expressive computing
in real time. Programs can not only be written to create music, but
they can be written to model musical environments that are
performed through musical live coding or the design and inter-
facing of tangible computing devices such as the IchiBoard.

Figure 8. IchiBoard [4].

6. INTERDISCIPLINARY BENEFITS
After taking Sound Thinking in the Spring 2009 semester, Music
major Charles Saulters developed a strong interest in using com-
putational thinking as a means of developing more expressive
gestural music controllers. He pursued a Research Experience for
Undergraduates with us over the summer, exploring ways to
apply these Performamatics concepts in even more exciting ways.
He describes his work as follows.

I am interested in enabling others to achieve more than
they ever thought possible through the use of computa-
tional thinking in real world situations that are relevant
and interesting to students. One “hook” that I found parti-
cularly interesting is the manipulation of virtual instru-
ments, composing for and performing using nontraditional
devices such as the iPod Touch. Now more than ever, we
musicians find ourselves in an age where technologically
almost anything is possible. It is therefore crucial that we
understand what makes computers function and acquire a
strong working knowledge of programs and the coding
behind them.

Interdisciplinary collaboration helps cultivate new and
exciting innovations that can bring about the revitalization
of CS education for which Performamatics was con-
ceived. Using music as a hook, we can create innovative
live performances and interesting visuals in conjunction
with “musical live coding” to tap the imagination of
people who might never have considered CS as a possible
major. People (like myself) tend to be intimidated by the
mystifying technical jargon. However, with more expo-
sure to interesting multi-disciplinary projects, students
can start thinking computationally and actively using that
new way of thinking in a hands-on way without even
realizing they are doing so. At that point, the fear is gone.

Devices such as the iPod Touch and iPhone are ideal tools
for exploring computational thinking. They are easy to
use, have simple, intuitive user interfaces, and have a
wide range of functionality: file transfer, web browsing,
MIDI control through accelerometers, light sensors,
microphones, and touch sensors.

While no Scratch interface to iPhones or iPods yet exists, these
sensor-rich input devices have tremendous potential as expressive
interfaces to musical live coding and performance. We see our
work in integrating IchiBoards into Sound Thinking Version 2 as
an initial step in providing these benefits.

7. ACKNOWLEDGMENTS
The work described in this paper is based upon work supported by
the National Science Foundation under Grant No. 0722161,
“CPATH CB: Performamatics: Connecting Computer Science to
the Performing, Fine, and Design Arts” and a complementary
Research Experience for Undergraduates (REU) supplement.
Principal Investigator: Jesse M. Heines. Co-Principal Investiga-
tors: Fred G. Martin, Gena Greher, Jim Jeffers, and Karen Roehr.
Senior Personnel: Sarah Kuhn and Nancy Selleck. Student
Researchers: Paul Laidler and Charles Saulters II. Additional
information on the Performamatics project can be found at
www.performamatics.org.

Alex Ruthmann’s adaptation of musical live coding in Scratch is
based on his collaboration with Andrew R. Brown and Andrew C.
Sorensen at the Queensland Univ. of Tech., Brisbane, Australia.

Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

8. REFERENCES
[1] Brown, A.R. (2005). Making Music with Java. Brisbane,

Australia: Lulu.com.
[2] Brown, A.R., & Sorensen, A.C. (2009). Interacting with

generative music through live coding. Contemporary Music
Review 28(1):17-29.

[3] Cooper, S., Dann, W., & Pausch, R. (2000). Alice: a 3-D tool
for introductory programming concepts. Jrnl. of Computing
Sciences in Colleges 15(5):107-116.

[4] Engaging Computing Group (2009). IchiBoard. www.cs.
uml.edu/ecg/index.php/IchiBoard/IchiBoard accessed Nov.
16, 2009.

[5] Greher, G.R., & Heines, J.M. (2008). Connecting Computer
Science and Music Students to the Benefit of Both. Assoc.
for Technology in Music Instruction (ATMI) 2008 Conf.
Atlanta, GA.

[6] Guzdial, M. (2003). A media computation course for non-
majors. SIGCSE Bulletin 35(3):104-108.

[7] Heines, J.M., Goldman, K.J., Jeffers, J., Fox, E.A., & Beck,
R. (2008). Interdisciplinary approaches to revitalizing
undergraduate computing education. Jrnl. of Computing in
Small Colleges 23(5):68-72.

[8] Heines, J.M., Jeffers, J., & Kuhn, S. (2008). Performamatics:
Experiences With Connecting a Computer Science Course to
a Design Arts Course. The Int'l. Jrnl. of Learning 15(2):9-16.

[9] Heines, J.M., Greher, G.R., & Kuhn, S. (2009). Music
Performamatics: Interdisciplinary Interaction. Proc. of the
40th ACM SIGCSE Technical Symposium on Computer
Science Education, pp. 478-482. Chattanooga, TN: ACM.

[10] Malan, D.J., & Leitner, H.H. (2007). Scratch for budding
computer scientists. Proc. of the 38th ACM SIGCSE
Technical Symposium on Computer Science Education.
Covington, Kentucky, USA: ACM.

[11] Maloney, J., et al. (2004). Scratch: A Sneak Preview. Second
Int'l. Conf. on Creating, Connecting and Collaborating
through Computing (C5'04), pp. 104-109. Kyoto, Japan.

[12] Martin, F., et al. (2009). Joining Computing and the Arts at a
Mid-Size University. Jrnl. of Computing Sciences in
Colleges 24(6):87-94.

[13] Sorensen, A.C., & Brown, A.R. (2007). aa-cell in practice:
An approach to musical live coding. Proc. of the Int'l.
Computer Music Conf. Copenhagen, Denmark.

[14] Wang, G., & Cook, P.R. (2004). On-the-fly programming:
using code as an expressive musical instrument. Proc. of the
2004 Conf. on New Interfaces for Musical Expression, pp.
138-143. Hamamatsu, Shizuoka, Japan: National Univ. of
Singapore.

[15] Yanco, H.A., Kim, H.J., Martin, F., & Silka, L. (2007).
Artbotics: Combining Art and Robotics to Broaden
Participation in Computing. Proc. of the AAAI Spring
Symposium on Robots & Robot Venues. Stanford Univ., CA.

