
– 1 –

Teaching Object-Oriented Concepts
Through GUI Programming
Jesse M. Heines and Martin J. Schedlbauer

Dept. of Computer Science
University of Massachusetts Lowell

One University Ave., Lowell, MA 01854
1-978-934-3634

[heines, mschedl]@cs.uml.edu

ABSTRACT
It is difficult to teach object-oriented programming (OOP) from a
language perspective, even to experienced programmers.
Complex syntaxes obscure concepts and make it difficult for
learners to get a real “feel” for OO architecture. This is a classic
example of “not seeing the forest for the trees.” OOP is best
taught within a context of an application or software framework.
Graphical user interface (GUI) programming provides a particu-
larly effective vehicle for this purpose because it is relevant to
virtually all applications and provides immediate feedback on the
correctness of OO structures through tangible, visual results. We
have built a GUI Programming course that focuses on the OO
aspects of building user and application programmer interfaces
(APIs). This paper presents an overview of our approach and
some of the techniques we use in that course.

1. OOP AND STUDENT EXPERIENCE
Object-oriented programming (OOP) has now been taught at the
undergraduate level for about two decades [1, 7]. Our experience,
however, is that while students who complete these courses can
“walk the walk and talk the talk,” they have trouble applying OO
concepts in project-based courses where they must solve problems
outside the domain in which they were introduced to OOP. If they
have not fully internalized the concepts, students will not see the
connections between the techniques they learned and the prob-
lems they encounter in the project course’s application domain.

We propose that one reason for this disconnect is that students
lack experience with large programs. Without such experience,
students don’t see the real benefit of OOP and therefore don’t
internalize the concepts. Consider, for example, the often-cited
pillars of OOP [2, 5] and their relationships to student programs:

• Extendibility – Homework assignments generally consist of
small programs that may extend a class or two, but they
seldom fit together into a larger, hierarchical class structure.

• Scalability – Student programs are seldom longer than a few
hundred or at most a thousand lines. Thus, they don’t see the
benefits of the OOP structure that become readily apparent in
programs several thousand lines long.

• Maintainability – Students typically work alone and seldom
look at others’ code except to copy it (a large problem in this
day of Google and the Web). The only code they may study in
detail is that of the instructor, and even then they often fail to

notice subtleties of design and therefore fail to emulate them.
Foremost in this regard is their failure to document code,
regardless of how carefully and completely the instructor may
document his or hers.

• Reusability – Students generally consider the programs they
develop to be “throw aways.” Seldom, if ever, do they reuse
their own code in an OOP fashion (cutting-and-pasting code
from one program to another doesn’t count), and even more
rarely do they reuse classmates’ code or provide code for their
classmates to use (again, unauthorized copying doesn’t count).

2. OOP AND GUI PROGRAMMING
To teach OOP effectively and give students firsthand experience
with its benefits, one needs a substantial framework. We have
found that GUI programming provides a particularly good
teaching framework. It is sufficiently complex to challenge even
our most advanced students, yet its visual nature and tangible
results put OOP within the reach of those students who have more
trouble grasping the concepts.

Four other factors support our decision to offer a two-semester
GUI Programming course sequence with heavy emphasis on
objects.

• The availability of excellent examples – The large Java Swing
(JFC) and .NET (and its predecessor MFC) class hierarchies
required to do GUI programming are themselves excellent
examples of large scale, well designed OO frameworks.
Significant learning can take place merely by browsing and
poking around these hierarchies.

• The availability of excellent tools – NetBeans, Eclipse, Visual
Studio .NET, and other less well known IDEs are mature tools
that all contain form designers and code generators. The
availability of these tools not only allows students to focus on
semantic relationships rather than syntactic details, but also
cuts down the number of lines of code that students need to
write themselves and reduces the number of errors in student
developed applications.

• The availability of (mostly) excellent documentation – One
can’t do GUI programming without knowing how to use and
navigate the API documentation, as there are simply too many
classes to know and too many methods to choose from.
Learning to navigate the API documentation is therefore a
critical skill for today’s students. More importantly, learning to

– 2 –

write quality API documentation is an even more critical skill.
The extensive documentation on the literally hundreds of GUI-
related classes and thousands of GUI-related methods provides
not only an excellent tool, but also an excellent guideline for
the level of documentation needed for a non-trivial application.
As students work with the existing documentation they are
quick to identify where that documentation falls short, and
professors can easily turn such discoveries into lessons on the
value of quality API documentation.

• The inclusion of essential design patterns – GUI programming
also makes use of many of the design patterns identified by the
“Gang of Four” [3, 4, 6]. Horstmann [4] dedicates an entire
chapter in his book Object-Oriented Design & Patterns to the
“patterns that arise in the Swing user interface toolkit and the
Java collections library.” Such patterns include observers (the
MVC architecture and listeners), strategies (layout managers),
composites (UI components and containers), and decorators
(scroll panes and borders). To these one might add singletons
(calendars), factories (borders), and commands (menus).

3. LECTURE TOPIC EXAMPLES
3.1 “Building Bridges” Between Classes
One of the major concepts that students struggle with in GUI
programming is the relationship between objects that represent
on-screen components (views) and objects that represent the data
behind those objects (not only models, but also the data structures
used to populate the models, either during instantiation or
afterward). There are many cases in which one needs to “build a
bridge” between various classes or methods or objects.

Students must, of course, understand the interaction between a
GUI component and its corresponding model. For example,
consider the steps necessary to set the text of the root node of a
JTree component. If you’re doing straight Java coding, you can
do this when you call the overloaded JTree constructor that takes
a DefaultMutableTreeNode as an argument:

DefaultMutableTreeNode root =
 new DefaultMutableTreeNode(
 "91.461 Fall 2005") ;
JTree jtreeCourse =
 new javax.swing.JTree(root) ;

When working with NetBeans, however, the code generator
always calls the default JTree constructor:

jtreeCourse = new javax.swing.Jtree();

The root node is set at this point, and there is no method in the
JTree class to set it to something else. Thus, asking students to
create a JTree with the root node text set to a specified value
often throws them. If they search carefully, they eventually find
the setRoot method in the DefaultTreeModel class. But how
do they get a reference to an object of that class and how do they
use it to set the text of the JTree root node?

The answer is easy if one understands OOP accessor methods,
casting from a parent to a child, and the fact that changing the
model automatically changes the rendition in the view. Taking
this in steps for clarity, one first gets a reference to the Tree-
Model for the JTree:

TreeModel tmCourse = jtreeCourse.getModel() ;

Next, one casts that TreeModel to a DefaultTreeModel:
DefaultTreeModel dtmCourse =
 (DefaultTreeModel) tmCourse ;

One can then set the root of the tree to the DefaultMutable-
TreeNode root constructed earlier:

dtmCourse.setRoot(root) ;

However, even though that’s just three lines of code, they
encompass a lot of concepts to understand! Such examples
provide a rich platform for teaching the OOP principles involved,
and students can easily see if they “build the bridge” successfully
because the text of the JTree root node will change to the text
they specified if they do it correctly. Note that discussion of this
topic also gets students into using the API, a critical skill (as
discussed earlier) in today’s programming environments.

3.2 Using Auxiliary Classes
Another concept that students struggle with is the use of objects
they create themselves. Even though they quickly grasp the
syntax of how to create a class and then instantiate an object of
that class, students often don’t see the need to do this in a “real”
application. Since those “real” applications are typically small,
they find it easier to just use regular variables (or at most arrays)
in their main classes rather than to go to the trouble of creating a
class to store their data.

Sticking with JTree, here’s an example of how auxiliary classes
might be introduced. Consider the tree shown in Figure 1. It is
pretty straightforward to create a 2D array of the students’ names
and e-mail addresses and create the DefaultMutableTreeNode
objects needed to populate this JTree. One could, of course,
create a Student class and use that to populate the tree, but doing
so seems contrived in such a small example.

Fig. 1. Sample JTree control populated with

students’ names and e-mail addresses.

The auxiliary class is not contrived when students are shown how
to create a JTree like that shown in Figure 2. Here one could use
code identical to that in the previous example and manipulate the
tree nodes after they have been created, but it is much more
elegant to create one’s own class that extends DefaultMutable-
TreeNode to encapsulate the tree node data and then use a
custom cell renderer (a class that extends DefaultTreeCell-
Renderer) to display the node. The interaction of the single GUI
tree control object (JTree), the multiple tree node objects

– 3 –

(derived from DefaultMutableTreeNode) that contain the
tree’s data, and the tree node renderer (derived from Default-
TreeCellRenderer) that displays the tree nodes as desired
provides a rich example of the power of OOP that students can
readily see and appreciate.

4. ASSIGNMENT EXAMPLES
4.1 Creating Custom Dialog Boxes
Assignments are of course intended to reinforce topics discussed
in class. After doing some work with simple GUI controls such as
text boxes and radio buttons and check boxes, the first real
challenge that students face is to use these controls in a custom
dialog box (JFrame or JDialog) and somehow get the results of
the user’s choices in that dialog box back into data structures
defined in the main class. Even a simple login dialog box like that
shown in Figure 3 makes a nice first example.

Fig. 3. A simple login dialog box, but the OOP challenge
is to pass the username and password entered here back

to the main class so that they can be validated.

There are several ways to do this, of course, but the method we
teach is to pass a reference to the instance of the calling class in
the parameter list of an overloaded constructor for the custom
dialog box, and then to use that reference to call public accessor
methods in the calling class that get and set its variables and/or
manipulate its objects. This method stresses the implications of
private data and public methods in two classes that have neither
inheritance nor encapsulation relationships.

These are clearly very basic OOP concepts, but few students
really grasp their significance. As mentioned earlier, they can
“walk the walk,” but they still have trouble applying basic
concepts in real applications. The beauty of doing so in a GUI

context is that they get immediate feedback on whether the data
was exchanged when they try to use it back in the main class.

4.2 Formatting Text
We have often felt that one could teach the entire GUI program-
ming course using a single common, yet surprisingly complex
example: word processing. We never did this because we feared
that students would get bored spending an entire semester adding
features to a single application. The opportunity to use such a
familiar application to illustrate OOP and GUI programming
principles is, however, simply irresistible.

Building on the concepts learned in creating custom dialog boxes,
one popular assignment we have used asks students to apply those
concepts to formatting text in a JEditorPane. All sorts of
custom dialog boxes are possible in this application, and it is
interesting to discuss which work best as modal dialog boxes and
which work best as modeless, as well as the many human factors
considerations involved in grouping various text attributes into a
single dialog box.

One of the very first issues – choosing the font to use – provides
an excellent example of the singleton pattern, because one must
have an instance of the GraphicsEnvironment class to call the
getAvailableFontFamilyNames method. The constructor for
the GraphicsEnvironment class is protected, so it cannot be
called directly. There is only one graphics environment anyway,
thus a singleton is appropriate.

GraphicsEnvironment ge =
 GraphicsEnvironment.
 getLocalGraphicsEnvironment() ;
String[] strFontNames =
 ge.getAvailableFontFamilyNames() ;

One could even go so far as building a font chooser dialog box,
but most students have their hands full just populating a
JComboBox with all the font names and then applying the
chosen font to the selected text. Figure 4 shows the formatting
dialog box submitted by one student for this assignment.

4.3 Additional Examples
All class notes, examples, and assignments for our course may be
found online by going to http://teaching.cs.uml.edu/~heines, click-
ing the Teaching button at the top of the page, and then clicking
the links for the courses named GUI Programming I and II. (The
course numbers have changed over the years.)

Our GUI programming course sequence is also a senior capstone
project course, so much of the second semester (GUI Program-
ming II) is spent on software engineering and human factors
issues. At the time of this writing (the Spring 2007 semester), we
are teaching a compressed version of the sequence, so classes
devoted to project plan reviews and student presentations may
also be found in GUI Programming I.

5. EXAM QUESTION EXAMPLES
Our exams mirror the course’s OOP emphasis, focusing on con-
cepts rather than the details of specific controls or the mechanics
of putting controls on the screen. We typically give open book
exams and allow students to use their own laptops or systems that
we provide to access the Java API during exams. Figure 5
presents a set of questions typical of those on our exams.

Fig. 2. Sample JTree control in which students’ pictures
have been added to their respective nodes.

– 4 –

6. TEACHING GUI PROGRAMMING
WITH WEB-BASED VS. STANDALONE
TECHNOLOGIES

This discussion would not be complete without addressing the
question of teaching GUI programming using HTML and its
related technologies (scripting languages, cascading style sheets,
etc.) vs. Java (or a similar language such as C#).

Many students understandably want to learn web-based technol-
ogies. The first problem with those technologies is that the GUIs
one can build in them are far less rich than those in standalone
environments, unless one uses proprietary products such as Flash.
But more importantly, scripting languages, though somewhat
object-oriented, tend to implement OOP in non-standard ways and
with clearly “shoehorned” syntax. (Consider, for example, how
constructors are implemented in JavaScript.)

Our philosophy in using Java (or some other highly object-
oriented standalone language) is that if students learn the concepts
that underlie GUI programming, they can apply them in any lan-
guage, even those that have not yet been invented.

7. REFERENCES CITED
[1] Beck, K., & Cunningham, W. (1989). A laboratory for teaching

object oriented thinking. Proceedings of a Conference on Object
Oriented Programming Systems Languages and Applications
(OOPSLA-89), pp. 1-6. New Orleans, LA.

[2] Chu, W.C., Lu, C.-W., Shiu, C.-P., & He, X. (2000). Pattern-based
software reengineering: a case study. Journal of Software
Maintenance: Research and Practice 12(2):121-141.

[3] Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design
Patterns: Elements of Reusable Object-Oriented Software (2nd ed).
Upper Saddle River, NJ: Addison-Wesley Professional Computing
Series.

[4] Horstmann, C. (2004). Object-Oriented Design & Patterns.
Hoboken, NJ: John Wiley & Sons.

[5] Mari, M., & Eila, N. (2003). The impact of maintainability on
component-based software systems. Proceedings of the 29th
Euromicro Conference, pp. 25-32.

[6] McConnell, S. (2004). Code Complete (2nd ed). Redmond, WA:
Microsoft Press.

[7] Sims-Knight, J.E., & Upchurch, R.L. (1992). Teaching object-
oriented design to nonprogrammers. Proceedings of OOPSLA-92
Educators’ Symposium. Vancouver, British Columbia, Canada.

The following questions pertain to controlling what happens when
the user presses the Tab key, which is known in Java as the focus
traversal policy.

1. Why is it important to worry about what happens when the
user presses the Tab key?

 Because an application in which pressing the Tab key causes
focus to jump all over the place is confusing to the user and
looks unprofessional.

2. One way to set focus to a component is call the grabFocus()
method. What class is grabFocus() a member of? (Use the
Java API to answer this and other questions in this section.)

 JComponent

3. The documentation says that “client code” should not use
method grabFocus(). What method does the API recom-
mend using instead of grabFocus()?

 requestFocusInWindow

4. A better way to implement your own focus traversal policy is
to create a class that extends the built-in FocusTraversal-
Policy class. Why must this be a separate class from your
application’s main class, which typically extends JFrame?

 Because a class can only extend one other class.

5. We have seen three ways to create an instance of a class that
you might use for your own focus traversal policy. Name two
that you might use to create a FocusTraversalPolicy class
for use in your application.

 Create an anonymous inner class.
 Create an named inner class.
 Create a separate external class.

6. Look up FocusTraversalPolicy in the Java API and scroll
down to the listing of its methods. You will see that five of the
six methods are abstract. What implication does this have for
the class that you create that is derived from the built-in
FocusTraversalPolicy class?

 You must implement each of the abstract methods or you will
not be able to instantiate your class.

7. Once you have defined a focus traversal policy, you must
associate it with your JFrame. What method performs this
function, and what class is that method a member of?

 setFocusTraversalPolicy in class java.awt.Container

Fig. 5. Sample test questions.

Fig. 4. A student-designed dialog box for

specifying text formatting options.

