

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ITiCSE ’04, June 28-30, 2004, Leeds, UK.
Copyright 2004 ACM 1-58113-000-0/00/0000…$5.00.

Automated Evaluation of Source Code Documentation:
Interim Status Report

 Ben Hirsch
Jesse M. Heines

University of Massachusetts Lowell
Dept. of Computer Science

One University Ave., Lowell, MA 01854
01-1-978-934-3634

{bhirsch,heines}@cs.uml.edu

ABSTRACT
The poor quality of students’ source code documentation is a major
impediment to software development and maintenance that receives
little attention in programming courses. While students are almost
always required to document their source code, they typically get as
much credit for trivial, useless comments such as

int n ; // declare an integer variable named n

as they do for meaningful, truly helpful ones.

We have attempted to develop a Web-based application that can
analyze source code documentation, assign it quantitative measures,
and provide comprehensive feedback on how to improve it. This
paper reports on our efforts to date.

Acknowledgement: Seed funding for this work was pro-
vided by the ACM SIG SCE via a Special Projects Grant.

Categories and Subject Descriptors:
D.2.4 Software/Program Verification.

General Terms: Documentation, Standardization.

Keywords: Programming, Documentation, Source Code.

1. THE PROBLEM
In November 1999, the Department of Education Office of Student
Financial Assistance issued a notice of its desire to procure “inde-
pendent verification and validation services” that included the ability
to “evaluate source code documentation to ensure accuracy and
completeness” (FBO Archive, 1999). At least one company claims
on its Web site to be able to provide this service (NITC, 2003), but
the authors’ efforts to contact that company have not been success-
ful. Unfortunately, while few would argue that quality source code
documentation is valuable, few (if any) guidelines exist on how to
produce or evaluate it.

Thus, source code documentation remains a critical — yet often
neglected — facet of computer program development at all levels.

The perplexing coincidence in this situation is that tools for produc-
ing well-formatted source code documentation are readily available.
Javadoc (Sun, 2000) and Doxygen (van Heesch, 2003; Sandberg,
2003) allow programmers to generate beautifully formatted Web
pages that provide comprehensive source code documentation in
standardized formats with relatively little effort. Given these tools,
students can and should be taught and required to produce such
documentation for all assignments.

We believe that students’ performance in a computer science pro-
gram will be enhanced if they are required to write thorough and
meaningful documentation. If we can develop a measurable stan-
dard for documentation and assign a numerical value to students’
programs that accurately represents conformance that standard, we
feel that we can help students learn to write documentation and
consequently better understand their code.

1.1 Going Beyond the Obvious
Writing documentation in a standard format is not enough. Docu-
mentation must also be useful. For example, documentation should
not simply state the obvious:

k++ ; // add 1 to k (a useless comment that
documents the obvious)

This type of comment is #2 on Green’s (2003) satirical list of 12
guidelines for documenting unmaintainable code. Interestingly
enough, the authors have found that Green’s guidelines are actually
some of the most useful in this arena if one reads the statements as
admonitions of what not to do. Kabutz (2002) finds most source
code documentation so useless that “it would never occur to me to
read the comments that geeks like you and I had written.” He
admits, however, that comments are useful “when they provide
information that I could not glean from the [code],” and he even
concedes that in some situations they’re “absolutely essential.”

Kabutz (op cit.) humorously reports that his grades went up consid-
erably when he gave in to instructors’ demands that he document
his code, even though his comments looked as follows (N.B. all
spelling errors are intentional!):

int i; /* Conter variabble for "for" loop. */
int t; /* Toatl of additions for calculaton */
int d; /* Indicidual number for calclatuion */

/* "for" loop */
for (i=0; i<100; i++) { /* inc i by one up to hunderd */
 d = f(); /* get ghe calue for d */
 t = t + d; /* ad it to t */
}
return t; /* return the variable t */

Thus, even though the above code has a sufficient level of docu-
mentation at first glance, closer inspection reveals that it is obviously
not meaningful documentation that enhances the software’s quality
or provides information of any value to those who must maintain it.

1.2 Project Goals
This project explores the development of algorithms for analyzing
Java source code documentation to assess not only the presence of
comments, but also the essence of those comments. We propose to
explore the creation of an application that assesses not only simple
documentation and code formatting characteristics such as:

• reasonable white space and indentation for readability

• reasonable in-line comments explaining the purposes of dis-
crete sections (blocks of about 5-15 related lines)

• ratio of lines and/or characters of comments to source code

• presence of author name and revision date near the top of the
code

but also more sophisticated characteristics such as:

• helpful summary documentation for all classes

• comments beyond the trivial for all variables

• explanations of the purpose, parameters, pre and post condi-
tions, and return value for all functions (methods)

Our overall goal is to produce a public Web-based application that is
freely available for use by students everywhere. The application will
allow programs to be uploaded for analysis, or the entire application
can be downloaded to run locally (assuming one has an appropriate
server to host it). The results of the analysis will be presented via a
detailed Web page that shows the shortcomings in a program’s
source code documentation and provides specific suggestions on
how to address them. While the Web implementation part of the
project is relatively straightforward, the algorithms for performing
the analyses are not. The development of these algorithms is the
central part of this project.

2. INITIAL EXPLORATIONS
Our initial approach was to attempt to simply extract all program
comments (using regular expressions under Perl) and check to see
what percentage of the source code consisted of comments. While
this provides some useful information, it is not a satisfactory metric
on its own. Source code must not only contain a reasonable number
of comments, those comments must be placed at appropriate loca-
tions. These experiments led us to realize that a certain level of
source code parsing would need to be done and that we would have
to be able to associate comments with specific statements or code
blocks.

We also looked at an open-source tool developed by IBM for pro-
ducing readability statistics of source code comments (Zlatanov,
2000). This tool provides the Fog, Flesch, and Flesch-Kincaid indi-

ces for source code comments, but again we felt that while useful,
this information did not satisfy the basic goals of our project.

We next experimented with JavaML (Badros, 2000), a plug-in for
IBM’s open-source Java compiler, Jikes (IBM, 2003). JavaML
produces output in the form of an XML file that represents the en-
tire source file as a tree. Unfortunately, however, JavaML does not
handle comments in a predic table manner, so it turned out to be of
little use for our project.

Fourth, we considered using Doxygen (van Heesch, 2003), an open-
source program similar to Sun’s Javadoc (Sun Microsystems, 2003).
While Javadoc can only produce output from Java programs, Doxy-
gen can produce output in multiple formats from programs written in
a variety of computer languages. Doxygen’s capabilities seem to
imply that it could do the same things as JavaML, but with much
greater consciousness of the source code comments. Unfortunately,
we discovered that Doxygen uses a fairly rudimentary parsing tech-
nique and is rather inflexible about where it permits comments to be
placed.

3. DISCOVERING CHECKSTYLE
We then discovered Checkstyle, a open source program designed to
provide comprehensive and extensible analysis of source code
programming style (Burn, 2003). Checkstyle was originally designed
to ensure that Java source code conform to Sun’s official coding
conventions. However, Checkstyle has a modular design, consisting
of a number of different “checks.” Checks can be written to verify
virtually anything with respect to the source code, such as hierarchi-
cal indentation, spacing between tokens, placement of parentheses,
use of curly braces and brackets, etc.

Checkstyle creates what it calls an Abstract Syntax Tree (AST),
based on ANTLR, a language tool that provides a framework for
constructing recognizers, compilers, and transistors from grammati-
cal descriptions containing Java, C#, or C++ actions (Parr, 2003).

The AST represents a source file ’s entire contents. Each code
block is a subtree of the main AST. Most importantly for our pro-
ject, Checkstyle handles source code comments consistently. While
comments are not accessible through the AST, they are associated
with specific program lines. This allows a check to be written that,
for example, can identify a class declaration and ensure that a
comment exists before, after, or on the same line as that declara-
tion. Furthermore, Checkstyle provides support for Javadoc, allow-
ing us to automatically parse Javadoc tags and determine the pres-
ence of information such as specification of the author and version.

The code below shows a simple check that reports where class
declarations occur.

 1 public class ReportClass extends Check
 2 {
 3 public int[] getDefaultTokens() {
 4 return new int[] { TokenTypes.CLASS_DEF } ;
 5 }
 6
 7 public void visitToken(DetailAST ast) {
 8 log(ast.getLineNo(),
 9 "Class at: " + ast.getLineNo()
10) ;
11 }
12 }

Checks are contained within Java classes that inherit from Check-
style’s superclass, Check, (extends Check at line 1). The getDe-
faultTokens() method at line 3 is used to tell Checkstyle for which
tokens we wish our visitToken() method at line 7 to be called. In

this case, we are asking Checkstyle to report any CLASS_DEF in-
stances. When a CLASS_DEF token is found, its contents are used to
generate an Abstract Syntax Tree (AST) which is then passed to
the check’s visitToken() method. Within visitToken(), we use
Checkstyle’s log() method to let Checkstyle know what we want
reported back to the user. In this case, we are simply reporting the
line number at which each class definition occurs.

4. PROJECT TASKS
We are currently writing checks for Checkstyle to ensure that
comments exist for every class, variable, and method declaration.
We are also requiring that the author of every class be specified
using the @author Javadoc tag. A sample check that tests for the
existence of class and class-level variable declarations that do not
have comments on their the same line or on the immediately preced-
ing or following line is provided in the appendix.

Once a sufficient number of checks are written, we intend to create
a Web-based interface that will allow users to upload their programs
to be validated. Checkstyle will run on the server side, using the
checks we have written as well as some that are supplied with the
Checkstyle distribution kit. Checkstyle’s output will be captured,
filtered, augmented, and formatted to provide users with meaningful
feedback on their source code documentation, pointing out short-
comings and making suggestions for improvement.

Ideally, we would like our validator to analyze comments further and
make at least a rudimentary assessment of their usefulness. At a
minimum, we believe that we can implement checks that test for a
minimum readability score on one or more of the major readability
scales, Gunning Fox Index, Flesch Reading Ease, and Flesch-
Kincaid grade level.

While it may appear that AI techniques must be employed to evalu-
ate higher levels of usefulness, we believe that much can be done
with far simpler techniques. Wilson et al. (1997) have demonstrated
powerful abilities to analyze the quality of software requirement
specifications by searching for key words, weak phrases, etc., that
can serve as “quality indicators.” Although their problem domain
was quite different from the one on which this proposal focuses,
their technique is highly relevant.

5. FUTURE WORK
We plan to expand the DocValidator to enhance its ability to recog-
nize and evaluate the usefulness of source code comments. While
requiring placement of comments in critical places that meet certain
readability scores is certainly important, it is also essential that stu-
dents learn to use meaningful comments. Most students new to
Computer Science are able to write comments indicating on the
most fundamental level what each statement does. However, stu-
dents must also understand and articulate what their code actually
accomplishes.

To achieve this level of analysis, we must discover precisely what
makes documentation acceptable or unacceptable . We need to
determine exactly what level of documentation should be required of
Computer Science students.

For more advanced evaluation of source code comments, consider-
able work must be put into AI and/or natural language parsing tech-
niques.

6. REFERENCES
[1] Badros, Greg J. (2000). JavaML. Posted at http://www.cs.

washington.edu/homes/gjb/JavaML/ (accessed November 6,
2003).

[2] Brameld, Walter (2001). The MultipartFormData Java Class.
users.boone.net/wbrameld/multipartformdata.

[3] Burn, Oliver (2003). Checkstyle . SourceForge.net. Posted at
http://checkstyle.sourceforge.net/ (accessed October 16,
2003).

[4] Green, Roedy (2003). How To Write Unmaintainable Code
Documentation. Posted at http://mindprod.com/unmaindocu
mentation.html (accessed May 1, 2003).

[5] IBM (2003). The Jikes Homepage. Posted at http://www-
124.ibm.com/developerworks/oss/jikes/ (accessed November 6,
2003).

[6] Kabutz, Heinz M. (2002). Why I don’t read your comments.
The JavaTM Specialists’ Newsletter, No. 39. Posted at
http://www.javaspecialists.co.za/archive/Issue039.html (ac-
cessed May 1, 2003)

[7] Parr, Terrence (2003). ANTLR. Posted at http://www.antlr.
org/ (accessed November 6, 2003).

[8] Sandberg, Albert (2003). C++ Coding Style. Posted at
http://www.flipcode.com/articles/article_codingstyle-pf.shtml
(accessed May 1, 2003).

[9] Sun Microsystems (2000). How to Write Doc Comments for
the JavadocTM Tool. Posted at http://java.sun.com/j2se/java
doc/writingdoccomments/index.html (accessed May 1, 2003).

[10] van Heesch, Dimitri (2003). Doxygen documentation system
Posted at http://www.stack.nl/~dimitri/doxygen (accessed May
1, 2003).

[11] Wilson, W.M, Rosenberg, L.H., and Hyatt, L.E. (1997).
Automated analysis of requirement specifications. Proceed-
ings of the 19th International Conference on Software Engin-
eering, Boston, MA, pp. 161-171.

[12] Zlatanov, Teodor (2000). Parsing with Perl modules. IBM
developerWorks. Posted at http://www-106.ibm.com/
developerworks/library/l-perl-parsing/ (accessed November 6,
2003).

7. APPENDIX
The code on the following pages tests for the existence of class and
class-level variable declarations that do not have comments on their
the same line or on the immediately preceding or following line. It is
included to provide a detailed view of how this critical component of
the DocValidator will be implemented. The code is not perfect; we
already know of at least one simple way to foil its comment detec-
tion scheme! However, it is provided as a more comprehensive
example of the types of extensions we plan to add to Checkstyle’s
basic capabilities and how they will be coded.

7.1 The DocValidator Class
 1 /* File: DocValidator.java
 2 * Ben Hirsch, UMass Lowell Computer Science, bhirsch@cs.uml.edu
 3 * Jesse M. Heines, UMass Lowell Computer Science, heines@cs.uml.edu
 4 * Copyright (c) 2003 by Jesse M. Heines. All rights reserved, but may be freely
 5 * copied or extracted from for educational purposes with credit to the authors.
 6 * updated by JMH on November 09, 2003 at 09:02 AM
 7 *
 8 * Note: To work with this class in NetBeans, file checkstyle.all-3.1.jar must
 9 * be mounted, which puts it on the classpath.
10 */
11
12 package edu.uml.cs.checks ;
13
14 import com.puppycrawl.tools.checkstyle.api.* ; // the Checkstyle API
15 import java.util.Map ; // type of returned comments
16
17 /** The contents of our check. This code is based on the discussion and samples
18 * posted at http://checkstyle.sourceforge.net/writingchecks.html. At this
19 * point our check tests for class and class-level variable declarations that
20 * do not have comments on their the same line or on the immediately preceding
21 * or following line.
22 * @author Ben Hirsch, bhirsch@cs.uml.edu
23 * @author
Jesse M. Heines, heines@cs.uml.edu
24 * @version 0.2, November 9, 2003
25 */
26 public class DocValidator extends Check
27 {
28 /** This method lets the TreeWalker know what TokenTypes we want to catch.
29 * @return array of static ints from class TokenTypes
30 */
31 public int[] getDefaultTokens()
32 {
33 return new int[] { TokenTypes.CLASS_DEF, TokenTypes.VARIABLE_DEF } ;
34 }
35
36 /** This method is called each time one of the tokens we are interested in is
37 * found. At present, we are only checking class and variable definitions.
38 * @param ast the Abstract Syntax Tree passed by the Checkstyle API
39 * @return void
40 */
41 public void visitToken(DetailAST ast)
42 {
43 // Simple check which will be true if a comment is not present on,
44 // before, or after the line of the token
45 if (! lineHasComment(ast.getLineNo() - 1) &&
46 ! lineHasComment(ast.getLineNo()) &&
47 ! lineHasComment(ast.getLineNo() + 1))
48 {
49 // if it's a class, so log the lack of a comment on a class
50 if (ast.getType() == TokenTypes.CLASS_DEF)
51 log(ast.getLineNo(), "Class defined without a comment") ;
52 // if it's a class-level variable, so log the lack of a comment on that
53 // variable (this check does not yet handle local variables)
54 else if (ast.getType() == TokenTypes.VARIABLE_DEF &&
55 ast.getParent().getParent().getType() == TokenTypes.CLASS_DEF)
56 log(ast.getLineNo(), "Class variable defined without a comment") ;
57 }
58 }
59
60 /** This method is a simple test to determine whether a line contains a
61 * comment.
62 * @param nLineNo number of source code line to check for a comment
63 * @return true if the line contains either a C-style or C++-style comment.
64 */
65 private boolean lineHasComment(int nLineNo)
66 {
67 FileContents fcSource = getFileContents() ; // supplied by Checkstyle API
68
69 Map CppComments = fcSource.getCppComments() ; // supplied by Checkstyle API
70 Map CComments = fcSource.getCComments() ; // supplied by Checkstyle API
71
72 return (CComments.containsKey(new Integer(nLineNo)) ||
73 CppComments.containsKey(new Integer(nLineNo))) ;
74 }
75 }

Checks are classes derived from Checkstyle’s Check class. The
method getDefaultTokens() at line 31 is used to tell Checkstyle
which tokens we want to trigger calls to our visitToken()
method. At line 33, we tell Checkstyle to call visitToken() for
each class definition (CLASS_DEF) and variable definition (VARI-
ABLE_DEF).

The visitToken() method at line 41, called each time a class or
variable definition is found, calls our lineHasComment() method to
check whether there is a comment on the line containing the defi-

nition or on the line before or after it. If not, visitToken() calls
Checkstyle’s log() method to report the lack of that documenta-
tion.

Method lineHasComment()at line 65 uses Checkstyle’s Ccom-
ments and CppComments collections (Java Map objects) to examine
the program’s actual comments. This method returns true if the
line passed as an argument contains a comment, and false oth-
erwise.

7.2 Compiling the DocValidator Class
> javac -d . -classpath .;C:\Progra~1\Checkstyle-3.1\checkstyle-all-3.1.jar DocValidator.java

7.3 Creating a jar File from the DocValidator.class File
This step is required because our check must be contained with a jar file.

> jar -cvf DocValidator_checks.jar edu\uml\cs\checks\DocValidator.class

7.4 The Checkstyle Configuration XML File
This file controls which checks are run when Checkstyle is executed.

 1 <?xml version="1.0"?>
 2 <!--
 3 File: DocValidator_checks.xml
 4 Jesse M. Heines, UMass Lowell Computer Science, heines@cs.uml.edu
 5 Copyright (c) 2003 by Jesse M. Heines. All rights reserved, but may be freely
 6 copied or extracted from for educational purposes with credit to the author.
 7 updated by JMH on November 09, 2003 at 10:14 AM
 8 -->
 9 <!DOCTYPE module PUBLIC
10 "-//Puppy Crawl//DTD Check Configuration 1.1//EN"
11 "http://www.puppycrawl.com/dtds/configuration_1_1.dtd">
12
13 <module name="Checker">
14 <module name="TreeWalker">
15 <module name="edu.uml.cs.checks.DocValidator"></module>
16 </module>
17 </module>

7.5 Demo File for Testing the Check
Note: At present, there must be a blank line between class variable declarations.

 1 public class demo
 2 {
 3 int a ;
 4
 5 /** comment */
 6 int b ;
 7 }

7.6 Running the DocValidator Check
> java -cp .;DocValidator_checks.jar;C:\Progra~1\Checkstyle-3.1\checkstyle-all-3.1.jar
 com.puppycrawl.tools.checkstyle.Main -c DocValidator_checks.xml demo.java
Starting audit...
demo.java:1: Class defined without a comment
demo.java:3: Class variable defined without a comment
Audit done.

A future stage of our project will run Checkstyle from a Web
page on the server side, and then capture the program’s raw out-
put and return it to the user in a more desirable format.

