
Experiences with IDEs and Java Teaching:
What Works and What Doesn’t

Keitha Murray, Organizer

Department of Computer Science
Iona College

New Rochelle, NY 10801
(914)633-2536

kmurray@iona.edu

Jesse M. Heines
Department of Computer Science
University of Massachusetts Lowell
Lowell, Massachusetts
heines@cs.uml.edu

Michael Kölling
Mærsk Institute
University of Southern Denmark
mik@mip.sdu.dk

Tom Moore
Department of Computer Science
University of Wisconsin – Eau Claire
Eau Claire, Wisconsin
tommoore@uwec.edu

Nan C. Schaller
Department of Computer Science
Rochester Institute of Technology
Rochester, New York
ncs@cs.rit.edu

John Trono
Department of Computer Science
Saint Michael’s College
Colchester, Vermont
jtrono@smcvt.edu

Paul J. Wagner
Department of Computer Science
University of Wisconsin – Eau Claire
Eau Claire, Wisconsin
wagnerpj@uwec.edu

Panel Description

The environment chosen to teach Java can have a profound
effect on students’ abilities to learn the language. Panelists will
report on their experiences using different Java Interactive
Development Environments (IDEs) to teach Java and what they
identify as the strengthens and weaknesses of each IDE. Each
panelist will discuss the most important features of the IDEs
and related teaching pedagogies to address “what works and
what doesn’t” when teaching Java.

Panelists Statements

Jesse M. Heines
Forte (Sun ONE Studio 4, www.sun.com/software/sundev) has
been the least satisfactory of the IDEs I have used. On some
systems it simply wouldn’t install. On others it would work for
a while, then inexplicably lose its ability to “see” files in
project directories. The user interface is overly complex,
requiring one to change literally dozens of settings just to
configure fonts and get the IDE to insert spaces instead of tabs,
a critical feature where professors may view students’ files with
a different editor than the one students used to create them. We
quickly abandoned this IDE.

JPad (ModelWorks Software, www.modelworks.com) is much
more stable, but while inexpensive (US$29 for the Basic
version, US$59 for the Pro version), it is not free. I currently
use the Pro version myself, but it has two major drawbacks: the
project implementation is particularly awkward and the help
system is not industry standard. Running programs annoyingly
involves two steps rather than one, as the IDE always brings up
a dialog box asking you to confirm which file to run and its
command line parameters. Thus while this IDE at least works,
it is not optimum for student use.

Michael Kölling
Object orientation has increased the overhead of accidental
complexities in first year courses. A good environment can do a
lot to avoid resulting problems. The benefit of BlueJ, however,
is not mainly in making the tasks smoother that students
otherwise do from the command line, but much more in the
provision of tools to enable activities that would not otherwise
be possible. Much of the benefit comes from the pure object-
orientation of the environment itself, which goes beyond what
most other environments provide: IDE/OO ≠ OO/IDE ("an IDE
for object orientation is not the same as an object-oriented
IDE"). Using custom-designed tools for object-oriented
teaching, we can employ a different pedagogy, teach in a
different order, and thus shift the emphasis of topics in the
curriculum.

We have used BlueJ for several years with good success. In this
panel session, we will report on our approach to using the
BlueJ tools as well as benefits and problems with using this
approach.

Tom Moore
Eclipse is an open source, extensible IDE, as well as an open
source software development project, that has the support of
major software vendors such as IBM, Oracle, Rational, and
Borland.

Eclipse is interesting as a pedagogical tool in at least three
dimensions:
1. for introductory Java programming,
2. for upper-division courses in which Java
 extensions are taught, and
3. as an environment for developing special purpose
 tools.

Specifically, several incarnations of Eclipse are particularly
valuable. Rational XDE allows young developers to see and

learn the correspondence between visual modeling in UML and
Java coding. WebSphere Application Developer can be used in
the development of Web-based and Enterprise Java
applications, and also provides support for a number of design
patterns. Finally, since Eclipse is open source, it can be used
to build plug-ins that extend the basic interface and provide
opportunities for learning new Java technologies such as XML,
Struts, or even Google searches.

Tom Moore has been programming in Java since 1998 and
working with Eclipse since Spring 2002. He has used Eclipse
extensively in both lower- and upper-division classes at the
University of Wisconsin – Eau Claire, where he reports that
students are very excited and productive in using Eclipse in its
various manifestations.

Nan Schaller
The Computer Science Department at Rochester Institute of
Technology has several laboratories that are equipped with Sun
Microsystem workstations running Unix. Our introductory
courses require a formal laboratory component. Some students
are unable to complete laboratory exercises during the formal
lab period. Many students have PCs in their rooms, although
some have Macs. Therefore, as it is free and runs on all three
platforms, GNU Emacs is used with its JDE (Java
Development Environment) to aid in teaching Java to
introductory students. The JDE provides a color-coded
automatic formatter and does allow for code compilation and
code execution from within Emacs as long as only a single Java
class is involved. It also facilitates locating compilation errors.
The Emacs editor, while not the easiest to use, does provide
automatic formatting that is compliant with the courses’ style
standard, such as indenting and lining up code properly. With
larger, multiple component programs, students must invoke the
Java compiler via the command line to make sure that all
components are compiled. Command line invocation is also
necessary for execution, if the class being edited does not
contain the main method.

What works? Students can work on their assignments on their
own computer without additional cost, regardless of the type of
the computer. Using Emacs in this way encourages students to
think about style standards. Students learn how to invoke the
java compiler and to execute java code both through the IDE
using the command line.

What doesn't work? Emacs takes a while to learn as its user
interface has some non-intuitive ways of handling tasks. Emacs
provides no debugging capability. Getting Emacs set up with
JDE can be tricky, but the department does provide a local
download site along with step-by-step instructions.

JohnTrono
Our CS1 course has a required weekly lab session that meets
for 100 minutes. After two guided labs that familiarize our
students with the necessary desktop software, i.e. how to access
shared departmental datafiles, use network printers, etc., and
the basic Integrated Development Environment (our IDE is
JBuilder 6.0, running on a PC with Windows NT), they begin

to develop their own Java classes during lab with possible
guidance/assistance from the instructor or lab assistant.

JBuilder is a Borland product that: displays keywords in bold;
facilitates easy transitions to each specific line where a syntax
error is, or to where a run-time error has occurred; and makes it
relatively straightforward to create a Java application or an
applet. In our second course, we show students how to set (and
advance to) breakpoints, how to step through the program after
reaching the breakpoint, and how to examine the program's
state via the current values in the variables in an effort to help
them develop a reasonable set of strategies for quickly
removing their software defects. We have found that the
inclusion of these latter tools in the JBuilder IDE can reduce
the students’ frustration, and dramatically lower the time
required during the testing and debugging phase of the software
development cycle, both of which can increase the chances that
each student learns the necessary concepts. The JBuilder IDE
also makes it very easy to include packages, and other Java
predefined classes, during the compilation stage.

Paul Wagner
I and several others in our department have been using a
combination of IBM's Visual Age (currently the Entry
Professional Edition 4.0, freely available at
www7b.software.ibm.com/wsdd/zones/vajava) and
TogetherSoft's Together Control Center (currently version 6.0,
commercially available, see www.togethersoft.com) for the
past several years in our Introduction to Object-Oriented
Programming course. Students start by learning Visual Age as
an environment for developing basic object-oriented Java
programs. They are also introduced to Together (as well as
UML in general) about halfway through the semester. From
that point on the students have their choice of environments for
laboratory assignments and programming exercises.

We see Visual Age as having its strengths in several areas.
First, it has a fairly easy interface and is thus easy to learn, even
for those with little programming experience. Second, it has a
strong collection of available built-in projects/packages in areas
from XML to database access using JSPs and JavaBeans.
Third, it has a good set of tools for debugging and program
development. Its major weakness is not having an associated
class model associated with the code as the BlueJ and Together
environments do.

Together's strength is in its mapping between UML class
diagrams and Java code. We are able to use it first for giving
the students small software system outlines and having them
implement the methods, then later having them use it to
implement their own designs. As we stress object-oriented
design early, and begin talking about design patterns in the
second programming course, Together becomes a useful tool
for the students. However, Together's environment seems
somewhat less intuitive than Visual Age, and there is some
reluctance on the students’ part to switch from Visual Age to
Together. We have also had some problems with stability of
the system in the laboratory environment.
Overall, students in our program adapt fairly well to the use of
both products, and gain flexibility through their experience
with the two environments.

