

– 1 –

Enabling XML Storage from Java Applets
in a GUI Programming Course

Jesse M. Heines
Department of Computer Science

University of Massachusetts Lowell
 One University Ave., Lowell, MA 01854

<heines@cs.uml.edu>

Abstract
XML, the Extensible Markup Language, is widely used in graphical user interface (GUI) programming today
to both specify user interfaces and to hold the data displayed in visual components. It is relatively straight-
forward for Java applets to read and process XML documents over the Web, but security restrictions make it
complex to store those documents back on the server after they have been modified. This paper describes a
set of cooperating programs and their underlying algorithms that allow Java applets to read XML documents
from – and, more importantly, to store those documents back to – a Java-enabled Web server. The author
uses this approach in a GUI programming course to provide students who implement their projects as Java
applets with the ability to use the full power of XML and its related technologies.

This paper was published in the June 2003 issue of
Inroads – The SIGCSE Bulletin Vol. 35 No. 2 pages 88-93.

1 Teaching GUI Programming
Graphical User Interface (GUI) programming is part art and
part computer science. Students often come into a GUI
programming course expecting it to be easier than courses
in, say, operating systems and compiler construction. They
don’t expect to have to wrestle with sophisticated algo-
rithms, and they certainly don’t expect to have to deal with
sophisticated data structures. They expect to put a widget
here, trap an event there, call some methods in an applica-
tion programming interface (API), bring up a few dialog
boxes, and, just to emphasize GUI’s “graphical” heritage,
demonstrate that they can display user error messages in
color. Entering students may recall having heard the term
“object-oriented” used once or twice in reference to GUI
programming, but they generally have no clue about the ex-
tensive data structures and algorithms that underlie pro-
grams with well-designed, adaptable, and extensible graphi-
cal user interfaces.

In addition, computer science students seem to check
their programming skills at the door when they sign up to
take GUI programming. Despite the admonition posted

prominently on my Web site – “don’t forget your program-
ming and don’t forget you’re programming!” – most do,
completely. Their image of GUI programming is extremely
shallow. They expect the course to require only simple
assignments that they can easily complete before dinner.

The challenge, then, is to get students to appreciate the
depth of GUI programming and understand how standard
programming principles apply to it. They need to see GUI
programming not as a computer science subfield, but as an
umbrella-like superfield that has far-reaching applicability.
Good graphical user interfaces not only make the power of
computing technology accessible to naïve users, they also
allow sophisticated users to focus on their areas of interest
by minimizing input/output concerns and allowing them to
work more quickly.

1.1 GUI Programming at UMass Lowell
In our department, GUI programming is taught as a two-
semester senior project course. Since the Web is the de
facto universal GUI platform today and students enthusias-
tically flock to courses that feature it, everything is taught

– 2 –

from a Web perspective. The synopsis of topics covered in
this course sequence is provided below. For further details,
including lecture notes and assignments, please see courses
91.353 and 91.461 on the author’s Web site at teach-
ing.cs.uml.edu/~heines.

The first semester begins with dynamic HTML, moves
into forms and their validation, and then introduces Java
applets. (We even do client-side form processing by using
JavaScript’s ability to access a page’s location object (its
URL) and parse the search portion (the part following the
question mark) when the form is posted using the GET
method.) We cover the main controls in the Abstract
Windowing Toolkit (AWT) and their complementary event
handlers, staying on the client side to avoid the headache of
rogue student programs crashing shared servers, but also to
focus on the GUI without having to learn the intricacies of
Java Servlets or JavaServer Pages.

The second semester moves into Swing components,
focusing on the power of the Model-View-Controller
(MVC) architecture. Here we introduce XML, the Extensi-
ble Markup Language, and the ability to both populate and
specify GUI controls from XML documents. Assignments
specifically related to these technologies are “light,” so as
not to intrude too heavily on students’ time when their main
responsibility is to their senior projects. However, students
are encouraged to use XML in those projects, and they
receive considerable coaching on how to do this.

2 Reading and Processing XML Documents With
Applets

2.1 Enabling XML Processing in Applets
A Java applet has read access to all publicly accessible
documents on the server from which that applet was loaded
(see Figure 1). Therefore, all you need to do to make it
possible for a Java applet to read and process XML docu-
ments from its server is to make Java’s XML classes avail-
able to the Java Runtime Environment (JRE) on your client
machine. The easiest way to do this is to place the Java
archive (JAR) files containing the XML parsers and Docu-
ment Object Model (DOM) into the JRE directory that is
used by your browser.

Note: The following discussion applies to Internet
Explorer 6.0 and Sun JRE Version 1.4.0 (java.sun.
com/getjava/download.html). Procedures for using
Netscape or Microsoft’s JRE will be somewhat dif-
ferent.

As of this writing (October 29, 2002), two JAR files pro-
vide all the functionality needed: xercesImpl.jar and
xmlParserAPIs.jar. These files are freely available from
xml.apache. org/dist/xerces-j. When you go to that URL,
look for a file with a .zip extension labeled “Latest stable
binaries.” As of this writing, that file was named Xerces-J-
bin.2.2.0.zip and was dated 26-Sep-2002.

The default location for the Sun JRE on Windows plat-
forms is a subdirectory of C:\Program Files\Java identified
by the JRE version. As of this writing, the latest version is
1.4.0_02, and its default location is C:\Program Files\Java\
j2re1.4.0_02. Under that you’ll find a lib subdirectory, and
under that another named ext. This is where Internet
Explorer will look for xercesImpl.jar and xmlParserAPIs.jar.
On my system, the full path to the directory in which these
files are stored is C:\Program Files\Java\j2re1.4.0_02\lib\ext.

This should work fine on your own system for running
applets that access XML documents, but what about Joe
Public somewhere out on the Web whose system is com-
pletely out of your control? For such people, you need to
use the archive attribute of the applet tag to identify a
location from which the .jar files can be automatically
downloaded if they are not already cached on the user’s
system. On my system I set up a virtual directory named
javajars in which to store archive files needed by my appli-
cations. I then specify the location of the .jar files as fol-
lows:

<APPLET code="MyXMLApplet.class"
 width="800" height="400"
 archive="/javajars/xercesImpl.jar,
 /javajars/xmlParserAPIs.jar">
</APPLET>

XML
File HTTP Server

Applet

send XML file
read request send standard HTTP

response with XML file

 fetch XML
file on own
server

Figure 1. An applet requesting an XML document from

the server from which that applet was loaded.

2.2 Implementing XML Processing in Applets
With access to Java’s XML classes on the client side, an
applet can read an XML file from the server on which that
applet resides. The goal of the discussion that follows is to
make a Document object available to the applet so that it
can use the various classes and methods of the XML Stan-
dard API (see xml.apache.org/xerces2-j/javadocs/api/
index.html). The classes we define will reside in the UmlGui
package, imported using the statement:

 import edu.uml.gui.* ;

The method that opens an XML document can encounter a
number of errors. The most obvious of these are that the
specified file may not exist or the document may not be
“well-formed” in an XML sense and therefore the method
cannot parse the document. This and all other methods in
the UmlGui package are therefore written to throw a pro-

– 3 –

grammer-defined exception (UmlGuiException) when an
error occurs.

Opening an XML document requires three basic steps:

(1) Get an instance of the DocumentBuilderFactory class:
DocumentBuilderFactory dbf =
 DocumentBuilderFactory.newInstance() ;

(2) Use the instance of the DocumentBuilderFactory class
to get an instance of the DocumentBuilder class:
DocumentBuilder db = null ;
// declare outside of try block
try {
 db = dbf.newDocumentBuilder() ;
catch (ParserConfigurationException pce) {
 throw new UmlGuiException(pce.toString() + ...) ;
}

(3) Use the DocumentBuilder object to open and parse the
document, returning the Document object if successful:
try {
 return db.parse(strFilePath) ;
} catch (SAXException saxe) {
 throw new UmlGuiException(saxe.toString() + ...) ;
} catch (FileNotFoundException fnfe) {
 throw new UmlGuiException(fnfe.toString() + ...) ;
} catch (IOException ioe) {
 throw new UmlGuiException(ioe.toString() + ...) ;
}

These steps are encapsulated into an openXMLDocument
method that takes a single String argument, strFilePath,
which is the full URL of the XML file to open on the server
from which the applet was loaded. (Applet method get-
CodeBase().getHost() is very handy for getting the name of
that server.)

Once students have a Document object available to
their applets, they can use the various methods in the XML
Standard API to navigate the document and extract data
with which to populate GUI controls (see Figure 2). They
have the full power of the XML DOM available, and they
can manipulate the data in memory in any way they wish.
The only problem is that they can’t store that data back onto
the server and thus make it persistent. To do that, they need
to make a different type of request.

3 Storing XML Documents on an Applet’s Server
It is commonly understood that Java applets run in a “sand
box” and security restrictions explicitly prohibit them from
reading and writing files on the client system. However,
security restrictions also prohibit applets from writing data
on the server. Therefore, the only way to get XML data
back to the server is to send it to a Java servlet or
JavaServer Page (JSP) and request that program to act as a
surrogate for writing it to a persistent file (see Figure 3).

Figure 2. A Java Swing JTree control populated

with data extracted from an XML file.

XML
File

Java Server

Applet

send XML file
write request

with Document

send confirmation
or error response

via standard HTTP

write XML
file on own

server
JavaServer
Page (JSP)

Figure 3. An applet requesting an XML document from

the server from which that applet was loaded.

Note: We use JSPs rather than servlets simply for
ease of development, because the server automati-
cally recompiles JSPs after any revision and there
is no need to deal with deployment descriptors.

Given the size of an XML file, it is not practical to send
it via a GET request. You could send it via a POST request,
but that means that the applet would have to call a page
other than the one that loaded it, thus exiting the applet.
This is a significant paradigm shift from reading the XML
document, which can be done with straightforward state-

– 4 –

ments within the context of the applet itself.
To send the XML document without exiting the applet,

we use HTTP tunneling [2]. This technique requires the
structure shown in Figure 3. Most importantly, the applet
must be loaded from a Java Web server that supports JSPs
because a Java program is required on the server to receive
the XML document sent by the applet.

3.1 Client-Side Algorithm
To make it as easy as possible for students to store their
XML documents, all the necessary steps are encapsulate
into a method named storeXMLDocument that takes three
required parameters:

(1) a reference to the calling applet, specified simply by
passing this

(2) a reference to the Document object to be stored
(3) a name to be used for storing the XML document

The reference to the calling applet is used to determine
two critical pieces of information:

• the host from which the applet was loaded by calling
reference.getCodeBase().getHost()

• the student’s user name by parsing the String returned by
calling reference.getCodeBase().toString() (when run-
ning an Apache server on Linux, the student’s user name
is the string between the ~ character and the first / that
follows it)

Given these data, storeXMLDocument proceeds as fol-
lows [2].

(1) Construct a URL object for the server-side program to
be called that will store the user’s document (app is
the parameter that gets the reference to the user’s app-
let (this), and strServletURL is the relative URL (with-
out the host name) to the storage JSP on the server
side):
URL urlData ;
String strProtocol = "http" ;
String strHost = app.getCodeBase()).getHost() ;
int intPort = -1 ;
try {
 urlData =
 new URL(strProtocol, strHost, intPort, strServletURL) ;
} catch (MalformedURLException murle) {
 throw new UmlGuiException(murle.toString() + ...) ;
}

(2) Establish a URLConnection to the URL just con-
structed:
URLConnection urlcConn ;
try {
 urlcConn = urlData.openConnection() ;
} catch (IOException ioe) {
 throw new UmlGuiException(ioe.toString() + ...) ;
}

(3) Disable browser data caching and enable the connec-
tion to send as well as receive data:
urlcConn.setUseCaches(false) ;

urlcConn.setDoOutput(true) ;

(4) Construct a ByteArrayOutputStream to buffer the data
to be sent:
ByteArrayOutputStream baosByteStream =
 new ByteArrayOutputStream(512) ;

(5) Construct an ObjectOutputStream:
ObjectOutputStream oosOut ;
try {
 oosOut = new ObjectOutputStream(baosByteStream) ;
} catch (IOException ioe) {
 throw new UmlGuiException(ioe.toString() + ...) ;
}

(6) Make a serialized version of the student’s XML docu-
ment (passed as parameter doc of type Document) [3]:
OutputFormat of = new OutputFormat(doc) ;
of.setIndenting(true) ; // yields “pretty printing”
of.setIndent(2) ; // number of spaces indented per level
StringWriter sw = new StringWriter() ;
XMLSerializer xmlser = new XMLSerializer(sw, of) ;
try {
 xmlser.serialize(doc) ;
} catch (IOException ioe) {
 throw new UmlGuiException(ioe.toString() + ...) ;
}
Note: Some readers may question why we don’t
serialize directly to the ObjectOutputStream. The ans-
wer is that doing so yields a java.io.OptionalDataEx-
ception when reading the data with
ObjectInputStream.readObject() on the server.

(7) Put the data to be sent into the output buffer:
try {
 oosOut.writeObject(strUserName) ;
 oosOut.writeObject(strFileName) ;
 oosOut.writeObject(strFilePath) ;
 oosOut.writeObject(sw.toString()) ;
 oosOut.flush() ;
 oosOut.close() ;
} catch (IOException ioe) {
 throw new UmlGuiException(ioe.toString() + ...) ;
}

(8) Set the length of the output buffer:
urlcConn.setRequestProperty(
 "Content-Length", String.valueOf(baosByteStream.size())) ;

(9) Do the actual data send:
try {
 baosByteStream.writeTo(urlcConn.getOutputStream()) ;
} catch (IOException ioe) {
 throw new UmlGuiException(ioe.toString() + ...) ;
}

The client-side applet now reads the server’s response.

(10) Construct a BufferedReader from the URLConnection
established in Step (2) above:
BufferedReader buffIn = null ;
try {
 buffIn = new BufferedReader(new InputStreamReader(
 urlcConn.getInputStream())) ;
} catch (FileNotFoundException fnfe) {
 throw new UmlGuiException(fnfe.toString() + ...) ;
} catch (IOException ioe) {
 throw new UmlGuiException(ioe.toString() + ...) ;

– 5 –

}

(11) Read the server’s response:
String strReturned = "" ;
String strLineRead = "" ;
try {
 while ((strLineRead = buffIn.readLine()) != null)
 strReturned += strLineRead + "\n" ;
} catch (IOException ioe) {
 throw new UmlGuiException(ioe.toString() + ...) ;
}

(12) Close the input buffer:
try {
 buffIn.close() ;
} catch (IOException ioe) {
 throw new UmlGuiException(ioe.toString() + ...) ;
}

(13) Return the server’s response to the calling statement:
return strReturned ;

3.2 Server-Side Algorithm
Even though server-side programs have fewer security
issues than applets, there are still some. Most importantly,
our Java Web server cannot write directly to student ac-
counts. We therefore defined a special directory tree for
uploaded student programs and defined a virtual path named
students to point to it. This directory is owned by the same
process that runs the Java Web server, so JSPs can write to
it. Students can read from it directly by addressing files as
http://servername/students/username/filename, and we pro-
vide facilities through standard HTML forms that allow
them to upload files to or delete files from their personal
subdirectories using the MultipartFormData class written by
Walter Brameld [1].

When the storage JSP is connected to as described
above, it
• reads the serialized XML document and other parameters
• determines where the document should be stored
• does the actual file write
• constructs and sends a response to the applet

The steps to accomplish this are as follows.

(1) Define variables so that they have global scope:
(Note: Do not initialize variables here, as that them
makes act like static variables, i.e., they are not reini-
tialized when the JSP is run repeatedly.)
<%!
 /** the XML document as a string */
 private String strDocument ;
 /** name of user to store data for */
 private String strUserName ;
 /** name of the file to write (no path allowed) */
 private String strFileName ;
 /** path to write file to */
 private String strFilePath ;
 /** response to return to caller */
 private String strResponse ;
 /** error message to return to caller */
 private String strException ;
 /** base for student uploads */
 private String strBase ;

 /** base where student accesses his/her uploaded files */
 private String strBaseURL ;
%>

(2) Initialize response to send back to the applet (this and
all remaining steps except (12) are within <% %>
pseudo tags):
strResponse = "" ;
strException = "" ;

(3) Construct an ObjectInputStream to read the incoming
data:
ObjectInputStream oisIn = null ;
try {
 oisIn = new ObjectInputStream(request.getInputStream()) ;
} catch (IOException ioe) {
 strException += “IOException ...” + ioe ;
}

From here on execution terminates if strException gets a
value.

(4) Do the actual data read:
try { // Hall & Brown, p. 1074
 strUserName = (String) oisIn.readObject() ;
 strFileName = (String) oisIn.readObject() ;
 strFilePath = (String) oisIn.readObject() ;
 strDocument = (String) oisIn.readObject() ;
 oisIn.close() ;
} catch (ClassNotFoundException cnfe) {
 strException = "ClassNotFoundException ...” + cnfe ;
} catch (IOException ioe) {
 strException += “IOException ...” + ioe ;
}

(5) Initialize the location of this student’s uploads:
if (System.getProperty("os.name").
 equals("Windows 2000")) {
 strBase = "C:\\StudentUploads\\" + strUserName + "\\" ;
 strBaseURL = "http://" + request.getServerName() +
 "/students/" + strUserName + "/" ;
}
else if (System.getProperty("os.name").equals("Linux")) {
 strBase = "/opt/JRun/servers/default/students/" +
 strUserName + "/" ;
 strBaseURL = "http://" + request.getServerName() +
 "/students/" + strUserName + "/" ;
}

(6) Declare variables for file writing:
String strUserPath = "" ; // path to user file on server
File filePath = null ; // File object for directory path
File fileXML = null ; // File object for XML file
FileOutputStream fosStream = null ; // for writing XML file
PrintWriter pwWriter = null ; // for writing XML file

(7) Construct the path specified by the user:
StringTokenizer st = new StringTokenizer(strFilePath, "/") ;
while (st.hasMoreTokens()) {

 if (System.getProperty("os.name").equals("Windows 2000"))
 strUserPath += st.nextToken() + "\\" ;
 else if (System.getProperty("os.name").equals("Linux"))
 strUserPath += st.nextToken() + "/" ;
}

(8) Set the path specified by the user, creating it if it does
not exist:
if (! filePath.exists())
 if (! filePath.mkdirs()) {

– 6 –

 strResponse += "Unable to create directory " ;
 strResponse += strBaseURL ;
 if (strFilePath != null && strFilePath.length() > 0)
 strResponse += strFilePath + "/" ;
 }

(9) Set the file specified by the user, creating it if it does
not exist:
fileXML = new File(filePath, strFileName) ;
try {
 fosStream = new FileOutputStream (fileXML) ;
} catch (FileNotFoundException fnfe) {
 strException += fnfe.toString() ;
} catch (SecurityException se) {
 strException += se.toString() ;

(10) Create a PrintWriter from the FileOutputStream and
write to it:
pwWriter = new PrintWriter(fosStream) ;
pwWriter.print(strDocument) ;
pwWriter.close() ;

(11) Construct the URL to the created file to return to the
user:
strResponse += strBaseURL ;
if (strFilePath != null && strFilePath.length() > 0)
 strResponse += strFilePath + "/" ;
strResponse += strFileName ;

(12) Send the response to the user:
<%= strResult.length() > 0 ? strResult : strException %>

4 FUTURE WORK
As currently implemented, the UmlGui package described in
this paper has no security to prevent users from gaining
access to and even overwriting other users’ files if they
choose to “fake” their user names. We did not consider
such security critical to implement in this first phase of
development since the package is being used only for
educational purposes. Clearly, security would be required
in a less collegial environment and should be added.

We know that the inability to write directly to a stu-
dent’s account is related to the fact that we deploy our Java
server as a non-privileged process. We are currently inves-
tigating whether a switch from Macromedia’s JRun to
Apache’s Tomcat will allow us to run privileged without
compromising system integrity and thus make it possible to
write directly to user accounts. Doing so would also solve
the security problem just described.

Despite these issues, the software in its present form
has proven invaluable in the author’s GUI programming
classes. The entire package is freely available for download
from the author’s Web site at teaching.cs.uml.edu/~heines.

5 REFERENCES
[1] Brameld, Walter. The MultipartFormData Java Class.

users.boone.net/wbrameld/multipartformdata (2001).
[2] Hall, M., and Brown, L. Core Web Programming, pp.

1083-1090. Prentice Hall, Saddle River, NJ, 2001.

[3] Sosnoski, D.M. XML in Java: Java document model
usage. www-106.ibm.com/developerworks/xml/library/ x-
injava2/?dwzone=xml (2002).

