
– 1 –

Creating and Maintaining Data-Driven Course Web Sites

Jesse M. Heines
Department of Computer Science

University of Massachusetts Lowell
 One University Ave., Lowell, MA 01854, USA

heines@cs.uml.edu

Abstract
This paper deals with techniques for reducing the amount of work that needs to be redone each semester
when one prepares an existing course Web site for a new class. The key concept is algorithmic generation
of common page elements while still allowing full control over page content via WYSIWYG tools like Mi-
crosoft FrontPage and Macromedia Dreamweaver. The paper explores both client- and server-side tech-
niques and discusses their advantages and disadvantages. The most advanced techniques are those that en-
code control information in XML rather than HTML or JavaScript and apply that information on the server
side using XSL and JavaServer Pages. The paper also touches on course organization techniques that might
involve students in the creation and maintenance of course Web sites, thereby fostering more student-
centered learning.

This paper was presented on October 18, 2002, as an invited address at the E-Learn 2002 Conference in
Montreal, Canada, sponsored by the Association for the Advancement of Computing in Education.

1 It’sa Lotta Work!
Numerous student and faculty surveys have shown that
parties on both sides of the podium consistently laud the
instructional benefits of course Web sites. For example,
when 62 students in a Web site-supported course were asked
to react to the statement “I wish other professors maintained
course Web sites like this one,” 82.3% “strongly agreed”
and another 16.1% “agreed” (Heines 2000). On the faculty
side, 68.0% of the 25 respondents to a survey on course
Web site development who did not have a course Web site
(out of 150 total responses) indicated that they would like to
have one (Grankovska & Heines 2003). Gehringer (2002)
found that while only 7.6% of 250 survey respondents
reported that their universities have a policy on making
course materials publicly available on the Web, 85.2% at
least posted their syllabi, 68.8% posted their assignments,
and 53.2% posted their lecture notes.

There is also ample evidence that the amount of work it
takes to post material on the Web is considerable. David
Jordan (1997) estimated that “creating and maintaining the
site roughly doubles the work involved in teaching the
course.” Even with the availability of commercial tools,
81.3% of the 150 professors who responded to the

Grankovska and Heines survey (2003) cited time as the most
“serious obstacle to making their course Web site everything
they want it to be” or the most “significant part of the reason
why they did not have a course Web site.”

Even with commercial tools – general-purpose as well
as those designed for instructional use – course Web site
development is time-consuming at best and daunting at
worst. But as difficult as creating a rich course Web site
may be, maintaining it – keeping its content and links
current and updating the site when the course is revised – is
even more arduous. Even for those of us who are highly
dedicated and have the best of intentions, the amount of
work that seems to need to be redone each semester is so
frustrating that we often give up and leave things the way
they were. The focus of this research is therefore to explore
techniques for reducing the amount of work needed not only
to create course Web sites, but to maintain them as well.

2 Moving to Data-Driven Course Web Sites
There are two basic ways to build most computer applica-
tions. First, you can embed data within program code, a
technique referred to as “hard-coding.” On a Web site, this
is analogous to creating pages in HTML, either directly

Creating and Maintaining Data-Driven Course Web Sites Heines

– 2 –

using a text editor and entering HTML tags and attributes
yourself, or indirectly using a WYSIWYG editor like Micro-
soft FrontPage or Macromedia Dreamweaver that creates
those tags and attributes for you. Pages can be built from
templates to achieve consistency in their look and feel, but,
for the most part, once a hard-coded page is created it
remains independent of all other pages on the site.

The second approach is to separate content data from
code logic and thereby make the application “data driven.”
On a Web site, this is analogous to creating pages where
what is displayed is stored in some sort of data file, while
how that content is displayed is controlled by some sort of
scripting technique such as JavaScript on the client side or
JavaServer Pages on the server side. Overall look-and-feel
or deployment of a new feature across the entire site can
then be modified or added by manipulating a small set of
control files.

Data-driven techniques are used by virtually all com-
mercial course Web site “engines” such as Blackboard
(www.blackboard.com), WebCT (www.webct.com), and
IntraLearn (www.intralearn.com). Such tools are excellent
for courses that fit their models and instructors who are
satisfied with their facilities, but it is typically difficult to
break out of their paradigms to add new course models or
interaction capabilities. While this restriction is frustrating
to experienced Web developers, the data-driven characteris-
tics of these engines use techniques that all serious develop-
ers embrace.

Consider, for example, the elements in the typical lec-
ture notes posting for shown in Figure 1. Focusing solely on
the notes themselves inside the navigation frames, you can
see that there are numerous common elements here that will
be formatted identically on all lecture notes pages: the
course number, class number, and date in the header, as well
as the eight control buttons to the right of the “Handouts and
Materials” heading. From left to right, the four arrow
buttons jump to the first, previous, next, and last posted
lecture notes. Likewise, the four control buttons jump to the
course home page, print and reload the current frame, and
remove (or restore) the navigation frames. It is probably
obvious that you wouldn’t want to include the code needed
for each of these elements on every lecture notes page. It is
more subtle, however, to appreciate that the “previous” and
“next” page is different for every page and therefore
requires that link to be generated algorithmically rather than
hard-coded. If you have the dates of each class stored in
some sort of data structure, you can not only write code to
format the header information consistently across all similar
pages, but you can also automatically generate the links
from one page to the next.

3 Using JavaScript on the Client Side
There are two basic choices for implementing data-driven
course Web sites on the client side: Java applets and
Dynamic HTML. The use of Java applets and similar plug-

ins (like Macromedia Flash) involves a dramatic shift away
from the basic programming paradigm based on HTML that
is used in most WYSIWYG editors. This is not inherently
bad, and many would argue that it’s high time we retired
HTML anyway. However, use of Java applets obviously
requires knowledge of those languages and their facilities
that is considerably beyond the scope of this paper.

Dynamic HTML, on the other hand, is easily integrated
into standard Web pages in the form of JavaScript or
VBScript. There is no need to throw away HTML that
you’ve already generated. Instead, you can simply augment
it by inserting scripting code into the same file. VBScript is
a Microsoft product and is more closely integrated with
Internet Explorer than JavaScript (or even Jscript, Micro-
soft’s version of JavaScript), but I prefer to work in
JavaScript because it is more universal. There are differ-
ences in the way JavaScript works on the major browsers,
but those differences tend to be small and easy to rectify.

The common elements in Figure 1 pointed out in the
previous paragraph are all implemented on my Web site
using JavaScript. I use a couple of simple conventions to
make the job easier, which help me organize the site as well
as make it data driven. First, I name all related files
sequentially, like class01.htm, class 02.htm, etc. Thus
the file name indicates which class it is, and I can move
content between files at will without affecting the links
between them. (I do this all the time, because no class ever
goes exactly as planned.) This simple convention makes it
possible to determine the class number dynamically using
the JavaScript code shown in Listing 1. When this code is
included in an HTML page – or, as I implement it, in a
common file that is included via a link in almost every
HTML page on my site – it sets variables that can be used to
generate the page header and to control navigation between
related pages “on the fly.” For example, the page shown in
Figure 1 has a URL of http://www.cs.uml.edu/~heines/
91.353/91.353-2001-02s/353-lecs/class09.htm. Executing
the routine in Listing 1 from this page sets variable int-
ClassNo to 9 and strPrefix to “class.”

Next, I use a simple JavaScript array data structure to
hold the dates of all classes. The second convention
involves the format in which those dates are stored: YYYY-
MM-DD, known as “ISO 8601” format because it is an
official standard of the International Organization for
Standardization. The advantage of ISO 8601 over the more
common M/D/YY format used in the United States is not
only that it is Y2K compliant, but, more important, that it
allows dates to be sorted alphanumerically. Thus my array
looks like this:
 // class days for the Spring 2002 semester
 var arrClassDate = new Array(
 "2002-01-23" , // 1
 "2002-01-30" , // 2
 "2002-02-06" , // 3
 ... and so on ...
 null) ;

Creating and Maintaining Data-Driven Course Web Sites Heines

– 3 –

Figure 1: A typical Web posting of lecture notes with numerous common page elements.
The vertical button labels were added for clarity; they do not appear on the actual Web page.

Listing 1: JavaScript code to extract the 2-digit lecture number and its prefix from a file name.
 1 // determine the file name from the current page's URL
 2 var strURL = "" + document.location ; // full URL of current page as a string
 3 var intSlashPos = strURL.lastIndexOf("/") ; // position of last forward slash in URL
 4 var strFile = // name of lecture notes file
 5 strURL.substr(intSlashPos+1, strURL.length) ;
 6
 7 // extract the class number and its string prefix
 8 var intDotPos = strFile.lastIndexOf(".") ; // position of dot in filename.extension
 9 var strClassNo = // 2-digit class number as a string
10 strFile.substring(intDotPos-2, intDotPos) ;
11 if (strClassNo.substring(0, 1) == "0") // remove leading 0 if it exists
12 strClassNo = strClassNo.substring(1, 2) ;
13 var intClassNo = parseInt(strClassNo) ; // class number as an integer
14 var strPrefix = // characters in file name that precede
15 strFile.substring(0, intDotPos-2) ; // the class number

Creating and Maintaining Data-Driven Course Web Sites Heines

– 4 –

If the lecture notes for a certain date have not yet been
posted, or if I simply don’t want to make them available to
students yet, I comment out the corresponding dates in the
array as you see for May 1 and 8 above.

Given a series of lecture notes files that follow the nam-
ing convention discussed above and their corresponding
dates in an array data structure, I use the built-in JavaScript
Date object along with a few small routines of my own
convert the ISO 8601 string to the “Weekday, Month Day,

Year” format you saw in Figure 1. (All of these routines are
available from the author on request.) In addition, I use the
same data to dynamically create the links for the four arrow
buttons. Part of the code accomplishes this is shown in
Listing 2 to give you a feel for what’s involved. Data-driven
creation of these links insures that they will never be
“broken,” and that, for example, the “Next” and “Last”
buttons are automatically disabled when students are
viewing the last page in the sequence.

Listing 1: JavaScript code to generate the previous and next page buttons.
 1 /** output links to first, previous, next, and last pages
 2 * @param intClassNo an integer specifying the current page number
 3 */
 4 function setPrevNextLinks(intClassNo)
 5 {
 6 // last and next buttons
 7 if (arrClassDate[intClassNo] != null)
 8 { // enabled versions
 9 document.writeln(// strImagesLoc is the relative path to the images directory
10 '<a href="' + strPrefix +
11 (arrClassDate.length-1 < 10 ? '0' + (arrClassDate.length-1)
12 : (arrClassDate.length-1)) + '.htm">' +
13 '<img src="' + strImagesLoc + '/blue_last.gif" alt="Go to Last Lecture Posted" '+
14 'align="right" border="1" hspace="2" width="24" height="24" ' +
15 'onMouseDown="this.src=\'' + strImagesLoc + '/blue_last_down.gif\'" ' +
16 'onMouseOut="this.src=\'' + strImagesLoc + '/blue_last.gif\'">') ;
17 document.writeln(
18 '<a href="' + strPrefix +
19 (intClassNo+1 < 10 ? '0' + (intClassNo+1) : (intClassNo+1)) + '.htm">' +
20 '<img src="' + strImagesLoc + '/blue_next.gif" alt="Go to Next Lecture" ' +
21 'align="right" border="1" hspace="2" width="24" height="24" ' +
22 'onMouseDown="this.src=\'' + strImagesLoc + '/blue_next_down.gif\'" ' +
23 'onMouseOut="this.src=\'' + strImagesLoc + '/blue_next.gif\'">') ;
24 }
25 else
26 { // disabled versions
27 document.writeln(
28 '<img src="' + strImagesLoc + '/blue_last_disabled.gif" ' +
29 'align="right" border="1" hspace="2" width="24" height="24">') ;
30 document.writeln(
31 '<img src="' + strImagesLoc + '/blue_next_disabled.gif" ' +
32 'align="right" border="1" hspace="2" width="24" height="24">') ;
33 }
 ... code for the first and previous buttons is analogous to what appears above ...
60 }

4 Moving to XML
The use of JavaScript and its built-in structures work very
well for simple data-driven routines that use Dynamic
HTML. Development is straightforward, code size is
small, testing is easy, and client-side execution is fast.
When the data gets more complex, however, arrays and
JavaScript’s simplified class structure (some would call it
a “pseudo class structure”) are insufficient to encapsulate
the relationships between various data elements and make
them available throughout the Web site. A better alter-
native is to encode data in XML, the eXtensible Mark-up
Language, and access it using one of the various tech-

niques specifically developed to allow XML data to be
used on Web pages.

For readers unfamiliar with XML, one can describe it
in a nutshell as a data-encoding scheme in which HTML-
like tags are used to label individual data items. Those
items can then be arranged into a hierarchy that structures
the entire data set and adds further meaning (semantic
content) to its components. The simple, self-explanatory
example shown in Listing 3 should suffice to give a feel
for how data is encoded in XML. Given such data, it is
not difficult to imagine using this information in a variety
of displays, such as:

Creating and Maintaining Data-Driven Course Web Sites Heines

– 5 –

Listing 3: Sample XML file to show basic syntax and structure.
 1 <?xml version="1.0" ?>
 2 <conferences>
 3 <conference name="E-Learn 2002" location="Montreal, Canada" startdate="2002-10-15">
 4 <session number="1234">
 5 <title>Creating and Maintaining Data-Driven Course Web Sites</title>
 6 <presenter>
 7 <name>
 8 <first>Jesse</first>
 9 <middle>M</middle>
10 <last>Heines</last>
11 </name>
12 <affiliation>University of Massachusetts Lowell</affiliation>
13 <e-mail>heines@cs.uml.edu</e-mail>
14 </presenter>
15 <categorization>
16 <application-domain>Higher Education</application-domain>
17 <technology>Web Technologies</technology>
18 <strategic-focus>Blended Learning</strategic-focus>
19 </categorization>
20 </session>
21 </conference>
22 </conferences>

• a listing of all sessions sorted by the primary pre-
senter’s last name

• a listing grouped by the various application domains,
technologies, or strategic-focuses

• an APA-formatted bibliographic reference or one in
any other standard format

A full discussion of XML is, of course, beyond the
scope of this paper, but many books are available that
address its syntax, capabilities, and related technologies (of
which there are many). My favorite remains Martin (2000),
even though it is now two years old (ancient in this field!).

There are several ways to work with XML data, the
easiest of which may be via client-side extensions to HTML
provided by Microsoft in Internet Explorer 6.0 and available
as a plug-in to Internet Exploror 5.5. This client-side
technique is unique to Internet Explorer, however, and
therefore is not truly usable in course Web sites that may be
accessed via other browsers or even versions of Internet
Explorer older than 5.5. Thus the preferred way to use
XML is on the server side.

XML parsers come in various flavors, many of which
are freely available (a list of reasonable size is available at
http://www.w3.org/XML/#software, W3C 2002a). Most
XML parsers can be seamlessly integrated with other server-
side techniques, although the effort to do so can be substan-
tial due to inadequate and sometimes even incorrect
documentation. Parsers exist that work with CGI programs
written in C++ or Perl, as well as Java programs imple-
mented as JavaServer Pages or Java Servlets. Some parsers,
such as Xerces from the Apache Software Foundation
(2002), load entire XML documents into memory and allow

them to be manipulated using a Document Object Model
(DOM). Others, such as the Simple Application Program-
mer Interface (API) for XML (SAX), read XML data as a
stream and process each data node in turn (Meggison 2002).
I prefer to process XML data using XSL – the XML
Stylesheet Language – which has a built-in parser and
capabilities specifically designed to translate XML data into
a variety of formats, including HTML (W3C 2002b, Heines
2003). Listing 4 shows an XSL file that generates the output
shown in Figure 2 from the XML data in Listing 3.

The advantage of using these techniques on the server
side is that it is possible to know exactly what software is
installed on the server and thus not have to deal with
browser differences on the client side. XSL stylesheets (as
well as programs that process XML using the DOM or
SAX) use the XML data to generate straight HTML with is
then “sent down the pipe” to the client. That HTML can be
as simple or as sophisticated as you like, including embed-
ded code that detects and compensates for the minor
differences between browsers at the HTML level. Luckily,
as of this writing those differences are small.

Note that all of these techniques require some degree of
server-side programming support, something that is not
always enabled on university servers. In the UMass Lowell
Computer Science Department, for example, we do not
allow server-side scripts of any sort on our main server that
hosts student and faculty Web pages due to the high
probability that such scripts will crash the server. As an
alternative, we make space available to all students and
faculty who request it on lower-capacity, non-production,
CGI- and Java-enabled servers.

Creating and Maintaining Data-Driven Course Web Sites Heines

– 6 –

Listing 4: XSL file to generate the output in Figure 2 from the XML data in Listing 3.
 1 <?xml version="1.0" ?>
 2 <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 3 <!-- processing begins here -->
 4 <xsl:template match="/">
 5 <html>
 6 <body>
 7 <xsl:apply-templates select="conferences/conference" />
 8 </body>
 9 </html>
10 </xsl:template>
11
12 <!-- this template is executed for each conference -->
13 <xsl:template match="conference">
14 <xsl:apply-templates select="session" />
15 </xsl:template>
16
17 <!-- this template is executed for each session -->
18 <xsl:template match="session">
19 <xsl:apply-templates select="presenter/name" mode="last-name-first"/>.
20 <i><xsl:value-of select="title" /></i>.
21 </xsl:template>
22
23 <!-- this template generates a presenter name in last-name-first format -->
24 <xsl:template match="name" mode="last-name-first">
25 <xsl:value-of select="last" />, <null />
26 <xsl:value-of select="first" /> <null />
27 <xsl:value-of select="middle" />
28 </xsl:template>
29 </xsl:stylesheet>

Figure 2: Output generated by applying the XSL file in Listing 4 to the XML data in Listing 3.
minimum.jsp is a JavaServer Page that applies XSL to XML and is available from the author on request.

5 Using XML on the Server Side
To understand the contribution XML can make to data-
driven course Web sites, consider the list of assignments and
lecture notes on the course home page in Figure 3. Setting
up and maintaining the assignments table with a standard
WYSIWYG editor is not too bad, but doing likewise for the
lecture notes table with the number and date of each class,
the related reading, the lecture topics to be covered,
complementary lab activity, and correct URL for each linked
element is error-prone even with FrontPage or Dream-
weaver. In addition, after you’ve gone to the trouble to
encode the information in <table>, <tr>, and <td> tags,
there is nothing else you can do with it. That is, you can’t
include it on the lecture notes pages themselves and you
can’t use it to control navigation between related pages as
discussed at the beginning of this paper.

Storing the data in XML as shown in Listing 5, how-
ever, yields not only the ability to use the data elsewhere,
but also the ability to manipulate it easily and use it in a
variety of other ways. For example, instead of cutting and
pasting table rows as each class moves from “upcoming” to
current or passed – a tricky maneuver even in WYSIWYG
editors – you simply delete the status="upcoming" attri-
bute of the XML file’s corresponding class element or
changes its value to an empty string (""). Once the lecture
notes and activity for a class are finalized, all you have to do
is delete the suppresslinks="true" attribute or change
its value to "false" and the appropriate links will be
generated automatically. As before, automatic link genera-
tion assures that those links will never be “broken” as long
as you follow the appropriate file naming conventions.

Creating and Maintaining Data-Driven Course Web Sites Heines

– 7 –

Figure 3. A typical course home page.

Listing 5: XML data used to generate the listing of lecture notes in Figure 3.
 1 <?xml version="1.0" ?>
 2 <!--
 3 513-lecs.xml, Jesse M. Heines, UMass Lowell Computer Science, heines@cs.uml.edu
 4 -->
 5 <classes>
 6 <class number="1">
 7 <date>2002-09-09</date>
 8 <reading><![CDATA[Deitel, Ch. 1,
Sec. 1, 6-12, 16,
17 (skim), Ch. 2]]></reading>
 9 <lecture>
10 Course Orientation, Web Servers, Browsers, and Applications; Setting Up Your
11 Computer for This Course
12 </lecture>
13 <activity>Getting Started with Our WebLabPC Systems</activity>
14 </class>
15 <class number="2" status="upcoming" suppresslinks="false">
16 <date format="bold" color="red">2002-09-13</date>
17 <note>
18 Class will be held on this Friday to make up for the class we will miss on
19 Monday, September 16, due to my observance of the Jewish holiday of Yom Kippur.
20 </note>
21 <reading>Deitel, Ch. 4-5</reading>
22 <lecture>
23 <![CDATA[The Static Web, Basic Form Processing, and Web Development Tools]]>
24 </lecture>
25 <activity>Creating a Client-Side Image Map</activity>
26 </class>
 ... code for the other classes is analogous to what appears above ...
99 </classes>

Creating and Maintaining Data-Driven Course Web Sites Heines

– 8 –

You can also extract data from the XML file to add to
the lecture notes shown in Figure 1. For example, you might
want to indicate the topics covered in the lecture and the list
of related readings, information which currently only exists
in the index on my course Web site. Pulling this data from
the XML file would once again guarantee that the two places
in which this information appears always agree with each
other, eliminating inconsistencies and “out-of-synch”
problems. As you might suspect, you can also use the data
in this file to address the page navigation issues discussed
above.

Thus, the encoding data in XML files and using that to
drive the Web site rather than straight HTML provides a
wealth of functionality and levels of consistency and
integrity much more difficult to achieve in non-data-driven
course Web sites. In all fairness, however, I must recognize
that some will object to the code-centric view one must
adopt to work with XML and will see that as a step back-
ward from today’s sophisticated WYSIWYG HTML editors.
I concede that this is a legitimate concern today, but some
XML editors with well-engineered graphical user interfaces
to exist today, and we at UMass Lowell are exploring
techniques that will allow the required XML data to be
specified via Web forms.

6 Student-Centered Course Web Sites
When course Web sites are data-driven and their formatting
code is independent of their content, one can begin to
explore alternative ways to generate their content, knowing
that the display format will remain consistent regardless of
who serves as the content author. For example, one might
envision a model of course Web site development and
maintenance that puts students in the center of the process as
course scribes. In addition to providing a way to get timely
information on-line without burdening professors with yet
another responsibility, this approach might get students
more actively involved with the subject matter and its
treatment in the course. Such involvement would undoubt-
edly enrich the individual scribes’ learning as well as that of
their fellow students following the classic adage: “If you
really want to learn something, teach [or explain] it to
someone else.”

We also expect that when students rather than profes-
sors put material on-line, there will be more discussion
among peers about the accuracy of the Web site content. It

would be ideal if this activity fostered an environment in
which students learn from and critique each other’s work in
the same way that journalism students do when putting
together a campus newspaper or literature students do when
editing submissions to a literary magazine. Students readily
accept that they and their peers make mistakes, while they
implicitly – although, of course, erroneously – assume that
whatever their professors post is correct. Such discussions
are one of the fundamental tenets of cooperative learning,
which has been shown to produce significant positive effects
on student achievement (Slavin, 1996).

7 References
Apache Software Foundation (2002). Apache XML

Project. xml.apache.org
Gehringer, E. F. (2002). To see or not to see: access re-

striction on course Web sites. Proceedings of the 2002
American Society for Engineering Education Annual Con-
ference and Exposition, Montreal, Quebec, Session 1520,
June 16-19, 2002.

Grankovska, S. & Heines, J. M. (2003). Course Web
sites: state-of-the-art. U.S.D.L.A. Journal 16(12). teaching.
cs.uml.edu/~heines/techrpts/papers/GrankovskaHeines_US
DLAJournal_online.pdf

Heines, J. M. (2000). Evaluating the effect of a course
Web site on student performance. Journal of Computing in
Higher Education (Fall 2000) 12(1):57-83. www.cs.uml.
edu/~heines/academic/papers/2000jche

Heines, J. M. (2003). XSL. In H. Bidgoli (Ed.), The
Internet Encyclopedia. To be published by John Wiley &
Sons.

Jordan, D. K. (1997). Evaluation of a Web site as a
teaching tool in MMW-1 (track C). Unpublished manu-
script. University of California, San Diego.

Martin, Didier, and twelve other authors (2000). Pro-
fessional XML. Birmingham, UK: Wrox Press, Ltd.

Meggison, David (2002). SAX. www.saxproject.org
Slavin, R. E. (1996). Research for the future: research

on cooperative learning and achievement: what we know,
what we need to know. Contemporary Educational
Psychology 21(1):43-69. www.successforall.net/resource/
research/cooplearn.htm

World Wide Web Consortium (2002a). XML Software.
www.w3.org/XML/#software

World Wide Web Consortium (2002b). What is XSL?
www.w3.org/Style/XSL/WhatIsXSL.html

