
This paper was presented at the Asian-Pacific Information Technology In Training and Education
(APITITE) Conference in Brisbane, Australia, on June 29, 1994.

 page 1 of 8

A NEW APPROACH TO
INCREASING CBT DEVELOPER PRODUCTIVITY

WITH AN INSTRUCTIONAL DATABASE

Dr. Jesse M. Heines
University of Massachusetts Lowell

Lowell, Massachusetts, U.S.A.

Dr. Robert S. Becker
TW Design, Inc.

Atlanta, Georgia, U.S.A.

Abstract

The development of computer-based training is a highly labor-intensive activity. Many CBT
authoring systems have been created to increase CBT developer productivity, but many become
unwieldy when applied to large courseware projects. The authors have worked to increase
development productivity by providing instructional designers with a way to build a database of
lesson content that is presented by a lesson “engine” cognizant of the course’s overall lesson
logic. The engine takes advantage of repetitive interaction strategies to present students with a
highly consistent user interface that is easy to update when course requirements change.

Authoring Systems and Productivity

In 1986 Heines and Israelite wrote, “the major purpose of computer-based training (CBT)
authoring systems is to increase CBT developer productivity,” and that purpose remains un-
changed in 1994. Over 50 major authoring systems have been on the market at one time or
another since that writing (CBT Directions, 1992), each with its own approach to simplifying the
process of converting lesson storyboards into interactive learning programs. As one reviews this
myriad of systems, it is easy to paraphrase Will Rogers and say, “I never saw an authoring
system that didn’t have some unique feature I really liked.”

While today’s authoring systems certainly simplify the job of producing individual course-
ware components (especially those involving multimedia), many of them become unwieldy when
used to produce courses requiring thousands of such components. Perhaps the clearest examples
of this may be seen with visual programming systems like Authorware and IconAuthor. These
systems are truly excellent tools for producing a wide range of instructional programs, but

A New Approach to Increasing CBT Developer Productivity APTITE ’94
Jesse M. Heines and Robert S. Becker Brisbane, Australia

 – 2 –

anyone who has used them to produce courses with thousands of icons will tell you that the
paradigm that produces quick, snazzy demos on exhibit floors can be difficult to manage when
applied to courses of any realistic size.

One major problem with such authoring systems is that they lack true subroutining capabil-
ities and the ability to access sophisticated databases. There is much repetition in CBT
courseware from lesson to lesson, and when the structure needed to implement typical sequences
must be repeated over and over rather than passing parameters to a single subroutine, the size of
a course can grow out of control. Such multiple instances of logical sequences can be a
nightmare when the course must be updated. In this situation, one seldom finds all occurrences
of a specific instance, leaving dangerous inconsistencies in the course’s user interface. When
RFPs for major courseware development efforts call present parameters like 16,500 screens, 800
graphics, 4000 pages of text, etc., and estimates of hundreds of man-hours to produce a single
hour of “moderately sophisticated instructional or training interaction,” (Fairweather and
O’Neal, 1984) the ability to reuse lesson logic and access courseware components from
databases becomes critical.

The more pressing problem, however, is that these authoring systems address the
implementation of CBT functionality, but do little to address the even more labor-intensive CBT
design process. In Making CBT Happen, Gloria Gery (1987) outlines the following five-step
“software development process” for CBT, with the indicated deliverable(s) for each step.

• Project Definition, which yields documentation specifying the audience(s), learning
objectives, course topics, interactivity levels, course standards, and design schedule

• Design, which yields a course design document

• Development/Scripting, which yields storyboards and/or scripts

• Programming/Entry Into Authoring System, which yields runnable courseware

• Evaluation, which yields revised courseware

In this scenario, not only does the authoring system make no contribution to the first three steps,
but the deliverables of these steps – documentation and paper mock-ups – cannot in any way be
used to automate the programming or data entry task in the fourth step. Even with on-line
storyboarding tools, Alessi and Trollip (1991) recommend doing storyboarding on paper first. It
is important to note that adding more people to the definition, design, and storyboarding steps
does not necessarily increase productivity. As Frederick Brooks (1975) taught us in The
Mythical Man-Month, as one puts more human resources on these types of tasks, the time needed
to resolve the inevitable communication bottlenecks between workers quickly offsets any
increases in the actual number of man-hours worked.

A New Approach to Increasing CBT Developer Productivity APTITE ’94
Jesse M. Heines and Robert S. Becker Brisbane, Australia

 – 3 –

The Instructional Database Approach

We are approaching these problems by writing courseware presentation engines that read course
content from databases and present it with a consistent user interface. This approach addresses
the implementation issue for large courseware projects by providing a near total separation of
lesson content and lesson logic, thereby allowing instructional sequences (logic) to be reused
with different data (content) with no increase in programming overhead. It addresses the
productivity issue for these projects by integrating the storyboard process with the building of
the instructional database, therefore realizing significant productivity gains by obviating the need
for reentering content data specified in the design and storyboarding steps. A similar approach
has been discussed by Sampath and Quaine (1990).

Early Presentation Engine

In 1986 the first author and his colleague Larry Israelite demonstrated a very small lesson
presentation engine (less than 40,000 bytes in compiled form) that read course menus and les-
sons from an instructional database and displayed them to students with a consistent user inter-
face (Heines and Israelite, 1986). Lessons consisted of both text and graphics, and specification
of this content was coded manually using a standard text editor and a tiny language
(approximately 10 commands in all). A simple text and graphics screen from that early work is
shown in Figure 1, while the same screen with an overlaid help window showing user interface
options is shown in Figure 2 (Scientific Systems, Inc., 1986).

Figure 1. Lesson display from an early Figure 2. Lesson display with overlaid
presentation engine. help window and consistent user interface.

A New Approach to Increasing CBT Developer Productivity APTITE ’94
Jesse M. Heines and Robert S. Becker Brisbane, Australia

 – 4 –

The 1986 lesson presentation engine had two drawbacks. First, the displays and inter-
actions we were able to present with this engine were relatively simple by today’s standards.
Second, the lessons were coded using a text editor and thus authors did not have a WYSIWIG
“feel” as they developed their lessons, although the interpreter automatically produced story-
boards from the author’s input. The approach’s main advantages were that it produced a course
with a highly consistent user interface in spite of the fact that about a dozen instructional
designers were involved in creating materials, and that it allowed faster lesson production than
could be achieved by the same team working in the underlying authoring system (TenCORE®).

Current Presentation Engine

We have made considerable effort to build on that early work, and we are in the process of
building a much more sophisticated lesson presentation engine that reads menus, lessons,
glossaries, help texts, and navigational control from an instructional database and presents them
using a consistent graphical user interface. In trying to maximize productivity, our main goals in
this effort were:

• to provide instructional designers with a WYSIWYG, on-line storyboarding tool

• to increase the speed with which lessons can be developed

• to automate the process of creating finished lessons from the on-line storyboards

• to create a system that allows instructional designers to update their lessons easily

The first goal is being achieved using TenCORE Producer®, a product of Computer
Teaching Corporation in Champaign, Illinois. Readers experienced with this tool may imme-
diately ask why, if we use TenCORE Producer, don’t we just run our lessons using the Producer
execution engine? The answer is that we need far more control over screen elements and
interactions than is possible using the Producer executor. Like many such point and click
authoring systems, Producer simplifies course development by making many assumptions about
student/computer interactions that we simply were not able to accept for this project.

The second goal is being achieved by developing display and interaction templates that
users copy within Producer and modify to create the sequences presented by the lesson engine.
Figure 3 shows a simple display template as it appears to instructional designers within Pro-
ducer, and Figure 4 shows how that display appears to students in the CBT course.

A New Approach to Increasing CBT Developer Productivity APTITE ’94
Jesse M. Heines and Robert S. Becker Brisbane, Australia

 – 5 –

Figure 3. Lesson display as viewed by an Figure 4. Lesson display as viewed by a
instructional designer in the TenCORE student running the presentation engine
Producer storyboard tool. (Northern Telecom, 1994).

A more sophisticated example is shown in Figures 5 through 7. Here two template screens
are combined (Figures 5 and 6) to create a single display screen (Figure 7) with a twist. Based
on the template identifiers that appear at the upper left of the screens during the storyboarding
process (see the arrow in Figure 6), the lesson engine logic “knows” that the text in the second
screen is to be overlaid onto that in the first inside a user-movable text box. Such power is made
possible by separating lesson logic from content. Note also the large number of student options
at the bottom of the screen in Figures 4 and 7. Such options would have been very difficult to
implement using the Producer execution engine, but are a reasonable task for the TenCORE
Language Authoring System in which our lesson engine is written.

The third goal is being achieved by using the raw output of the TenCORE Producer story-
board tool as our instructional database. Again, to readers experienced with this tool, this means
that we read the .TPR file directly; we do not convert it to a .BIN file. The .TPR file is a Ten-
CORE “nameset,” a file format that is fully documented in the TenCORE Language Authoring
System manual for version 4.2. It is interesting to note that we looked into using other database
generation tools for this goal, most notably FileMaker Pro for Windows, but Claris, the software
manufacturer, refused to give us documentation on the file format written by this excellent
database tool, so we were unable to use it. (The exported ASCII file written by FileMaker does
not contain graphics or text formatting information, so it is useless for our application.) The for-
mat of the “nameset” written by TenCORE Producer is documented in the TenCORE Language
Authoring System manual, so we have been able to process it easily.

A New Approach to Increasing CBT Developer Productivity APTITE ’94
Jesse M. Heines and Robert S. Becker Brisbane, Australia

 – 6 –

Figure 5. First part of a composite screen. Figure 6. Second part of a composite
Note that the template type specified in the screen. Note that the template type is
upper left-hand corner of the screen is DISP1. MOVE8. (Northern Telecom, 1994).

Figure 7. Composite screen with a movable text window as
seen by students, built from the templates in Figures 5 and 6.

The combination of the previous three elements goals has helped us achieve our fourth
goal: to create a system that allows instructional designers to update their lessons easily. While
we do indeed have a team of programmers building the content-independent lesson engine,

A New Approach to Increasing CBT Developer Productivity APTITE ’94
Jesse M. Heines and Robert S. Becker Brisbane, Australia

 – 7 –

instructional designers are able to update their own lessons without needing to convey the
changes to a programmer. What’s more, the separation of logic and content has made the entire
course much easier to update than our client’s previous courseware. When the client changed
management and lead designers, the programming team was able to accommodate design
requests by changing the lesson engine and have those changes reflected throughout the entire
course. Such flexibility would have been impossible had we not taken the instructional database
approach.

Application

The approach described here is being used to produce a course with over ten thousand screens,
thousands of interactions, and hundreds of graphics. When the course is analyzed, however,
there are less than 200 varieties of screen layouts and 20 types of interactions, each of which can
be specified in a template that developers can copy into a lesson sequence and then edit to add
course content. The presentation engine takes advantage of the similarities between screen lay-
outs in much the same way that word processing style sheets obviate the need to store complete
formatting information with each instance of a paragraph of a given type. That is, the engine
knows how to present and have the user interact with each template type, and thus requires that
the database to contain only the information unique to each instance of template.

While developers certainly need to be trained in the use of a tool such as that we are
developing, that training is minimal (on the order of a few days), and the resultant course is guar-
anteed to have a consistent user interface throughout its entire domain. We expect our approach
to reduce programming time and code size, thus reducing the inevitable bugs. It should also
allow developers to be more attentive to function and content by automating routine tasks and
choices having to do with form, i.e., screen layouts and interactions. Our experience is that
freedom from such details allows developers the flexibility to create more meaningful interaction
and instructional strategies.

These characteristics should have a direct effect on productivity, allowing the large course
to be developed with minimum cost and maximum efficiency. Empirical data on such gains was
not available at the time of this paper’s writing (February 1994), but should be available by the
time the paper is presented (June 1994). Readers are invited to contact the major author
(heines@cs.uml.edu) to request an addendum on such data when it is available.

Acknowledgments

This work is funded in part by Northern Telecom of Raleigh, North Carolina, and TW Design of
Atlanta, Georgia. The current presentation engine is being coded by Heather Ehrlich, Ngo Phan
Greg Flynn, Graham Gerade, and Mike Chartier working with Dr. Heines at UMass Lowell.

A New Approach to Increasing CBT Developer Productivity APTITE ’94
Jesse M. Heines and Robert S. Becker Brisbane, Australia

 – 8 –

TenCORE® and TenCORE Producer® are registered trademarks of Computer Teaching
Corporation in Champaign, Illinois.

References

Alessi, Stephen M., and Stanley R. Trollip (1991). Computer-Based Instruction: Methods and
Development. Prentice-Hall, Englewood Cliffs, New Jersey, pp. 332-334.

Brooks, Frederick P., Jr. (1975). The Mythical Man-Month: Essays on Software Engineering.
Addison-Wesley Publishing Company, Reading, Massachusetts.

CBT Directions (1992). Comparing Authoring Systems: Where Do You Start? CBT Directions,
5(3):15-29, May/June 1992.

Fairweather, P.G., and A.F. O’Neal (1984). The Impact of Advanced Authoring Systems on CAI
Productivity. Journal of Computer-Based Instruction 11(3):90-94, Summer 1984.

Gery, Gloria (1987). Making CBT Happen. Weingarten Publications, Boston, Massachusetts,
pp. 95-96.

Heines, Jesse M., and Larry Israelite (1986). Increasing CBT Increasing CBT Developer
Productivity with an Instructional Database. 28th International Conference of the Association
for the Development of Computer-based Instructional Systems, Washington, D.C.

Northern Telecom, Inc. (1994). DMS-100 Family/DMS SuperNode System Maintenance
Curriculum Course Management Program (CBT Course). Northern Telecom Technical
Education Center, Raleigh, NC.

Sampath, Santha, and Andy Quaine (1990). Effective Interface Tools for CAI Authors. Journal
of Computer-Based Instruction 17(1):31-34, Winter 1990.

Scientific Systems, Inc. (1986). MAP/TOP Advanced Concepts (CBT Course). Scientific
Systems, Inc., Cambridge, Massachusetts.

