
File:  C:\E-DRIVE\PAPERS\1993PRES\EDMEDIA\PAPER7A.DOC page 1 of 12 

Improving Visual Programming Languages  
for Multimedia Authoring1 

John F. Koegel and Jesse M. Heines 

Department of Computer Science 
University of Massachusetts Lowell 

Lowell, MA 01854 
{koegel,heines}@cs.uml.edu 

ABSTRACT 

Visual programming languages are emerging as an important paradigm for development of inter-
active multimedia presentations.  We are actively developing and using such languages and have 
identified several criteria for evaluating the user interface for such tools.  These criteria include: 
1) support for the authoring process, 2) icon set semantics, and 3) usability of the interface.  In 
this paper we compare two commercial authoring tools and discuss visual programs used for our 
evaluation. 

1.  Overview 

1.1  Multimedia Authoring 

The creation and editing of interactive computer-based presentations which combine text, graph-
ics, audio, and video is called multimedia authoring. Contemporary tools provide both media 
editing and multimedia composition as well as more specialized services including database and 
file access, courseware support, and extensibility. Such tools make it possible to design sophisti-
cated presentations, but are more difficult to use than previous menu and text systems for several 
reasons: 

• The more powerful authoring environments require more learning time 

• The creation and integration of animations, video, and audio is a more elaborate process 
and is typically less familiar to authors than text and graphics composition 

We have been actively developing and using multimedia authoring tools for a number of years. 
This paper summarizes our observations and experience with two commercial multimedia au-
thoring packages and provides the following results: 

• Detailed criteria for evaluating visual programming interfaces for multimedia authoring, 
including icon set semantics and support for the authoring process 

• Example iconic programs for comparing different multimedia visual programming tools 

                                                 
1 This paper was presented at the ED MEDIA 93 World Conference on Educational Multimedia and Hypermedia in 

Orlando, Florida, June, 1993, and was published in Proceedings of ED-MEDIA 93, ed. H. Maurer, pp. 286-293, 
Association for the Advancement of Computing in Education, Charlottsville, Virginia, USA.  



Buford and Heines ED-MEDIA 93 

–  2  – 

• General recommendations for improving the design of such systems’ user interfaces 

Multimedia authoring tools will become a significant enabling tool for courseware and other 
interactive presentations.  However, the development of such materials with the best tools avail-
able today requires significant expertise, equipment, and time.  The goal of this paper is to fur-
ther advance the usability of such tools. 

1.2  Synopsis of Authoring Paradigms 

There are at least fifty commercial packages for developing computer-based training or interac-
tive presentations.  Many of these provide audio-visual device control for multimedia delivery.  
Listed below are the three of the most common paradigms for multimedia authoring. 

• Outline: An outline of the presentation is constructed in a text-based outlining editor. 
Each outline entry can be expanded into a presentation screen which incorporates graph-
ics, text, and interaction. 

• Visual Programming: A set of icons are arranged in a graph which specifies the interac-
tions and control path for the presentation. The functionality associated with each icon 
can be modified using associated menus and editors.  Typically a simple text language is 
available for performing calculations within an icon. 

• Scriptware: Graphics, text, and other media editors are combined with an integrated and 
special purpose programming language. Programs (scripts) define the control flow and 
interaction behavior. The script language is typically intended to have a simple, easy to 
use syntax. 

1.3  Visual Programming 

Shu (1988) defines visual programming as “the use of meaningful graphic representations in the 
process of programming” (p. 9).  To us, however, visual programming is closer to Shu’s defini-
tion of a visual programming language: “a language which uses some visual representations to 
accomplish what would otherwise have to be written in a traditional one-dimensional program-
ming language” (p. 138).  This definition is still quite broad, and indeed must be narrowed for 
clarification in the current context.  In this paper, we use visual programming to mean the con-
struction of a graph of interconnected icons which can be interpreted by an execution engine to 
perform a series of tasks. 

In a “pure” visual programming system, all program tasks would be specified through an iconic 
interface. None of systems we know of that are usable for real applications yet reach this goal, 
and it is not clear that the goal is fully desirable. That is, some things are just easier to specify 
through textual commands or dialog boxes than through the manipulation of icons. Shu therefore 
analyses visual programming languages along three dimensions: their level, scope, and extent 
(pp. 139-141). 

• Language level is “an inverse measure of the amount of detail that a user has to give to 
the computer in order to achieve the desired results.” Higher levels visual programming 



Buford and Heines ED-MEDIA 93 

–  3  – 

languages provide icons that representing high-level functions, that is, functions that per-
form compound and/or complex tasks such as presenting a named video sequence as op-
posed to low-level functions such as positioning a videodisc player to a specific track, 
turning the video signal on, playing to another track, and then turning the video signal 
off. 

• Language scope describes “how much a language is capable of doing.” Visual program-
ming languages often display the quality of making simple tasks like displaying a video 
sequence truly trivial, but making standard programming tasks of very modest complex-
ity, like extracting the first word of a student’s response, difficult if not impossible. 
Achieving balance between these extremes if quite difficult without compromising the 
visual programming paradigm. 

• Language extent for visual programming refers to “how much visual expressions are in-
corporated in the programming language.” As mentioned above, we know of no systems 
that are purely visual, and we’re not sure that a purely visual programming system would 
be desirable. However, some visual programming systems require an inordinate amount 
of textual programming, particularly for implementing conditional execution. Unfortu-
nately, some such systems have only very low-level programming capabilities, making 
even modest flow-of-control constructs difficult to implement. 

1.4  Object-Oriented vs. Iconic 

Iconic authoring systems are often mistakenly considered to be object-oriented because some 
such systems call icons objects, and virtually all object-oriented systems use icons.  To clarify 
matters: an icon is a graphical representation of a function, while an object is a programming 
entity made up of a type definition plus definitions of the operations that can be performed on 
objects of that type.  In addition, object-oriented systems allow the definition of general proper-
ties of a class of objects plus specific properties of subclasses of that object.   

For example, in an object-oriented authoring system one might define the general properties of a 
user input action and then distinguish the specific properties of mouse, keyboard, and audio in-
put.  Thus, while some iconic authoring systems are built using object-oriented technology, that 
is, they are implemented using an object-oriented language, their appearance to multimedia au-
thors is iconic, not object-oriented.  Iconic authoring systems use icons to represent fully con-
tained functions that can be combined in various ways to create multimedia programs. 

1.5  Authoring Process 

The authoring process typically starts with a storyboard which lays out the general organization 
and content of the presentation. The storyboard evolves as the media are collected and organ-
ized; new ideas and refinements to the presentation are added as the presentation takes shape. 
The author/artist replays parts of the presentation during this refinement process. 

The storyboard is informal and high-level. The emphasis is on facilitating the creative process by 
using sketches, screen grabs and other rapid input forms. The storyboard can be retained with the 
final presentation to show overall structure and content. 



Buford and Heines ED-MEDIA 93 

–  4  – 

2.  Review and Comparison 

2.1  Package Selection and General Criteria 

IconAuthor (AimTech, 1992) and Authorware Professional (Authorware, 1989) are both widely 
used and highly-rated commercial multimedia authoring tools.  Each is available on multiple 
platforms and is suitable for developing applications for training or presentations.  Both use the 
visual programming paradigm, but with notable differences. For these reasons, we selected these 
two packages for study. 

We are primarily interested in evaluating and improving the user interface of multimedia author-
ing tools which employ visual programming techniques.  We do not consider many issues that 
would be important in selecting one of these packages for actual use, such as integrated tools, 
performance, platform, or data interchange.  Instead, we focus on two areas: the semantics of the 
icon set and the human factors of the iconic interface. 

Icon set semantics concern identifying the meaning of the primitives and constructors defined by 
the visual programming language, including individual functionality and compositional methods. 
Programming language theory has several systems for developing formal semantics of a pro-
gramming language.  These techniques are used to develop systematic answers to questions re-
lated to functionality and correctness.  Visual languages which closely follow procedural lan-
guages, or which can be translated into a procedural language, will borrow their semantics from 
the corresponding procedural model.  The practical consequence of semantic analysis is to an-
swer questions such as what presentation and interaction sequences can be represented by the 
language, and whether all iconic compositions have a consistent interpretation.  Additionally, 
multimedia authoring tools include methods for temporal composition and synchronization; the 
correctness, expressiveness, and precision of these facilities is perhaps a unique aspect of multi-
media authoring languages when compared to traditional programming languages. 

In visual programming, the user manipulates a pictorial representation of a sequence of actions 
to achieve some larger function. Many factors influence the power and usability of such an inter-
face, including the consistency and complexity of the icons, the graph organization, and the 
number of steps needed to perform editing operations. The domain of multimedia authoring, be-
cause of its visual orientation, adds the relation between the iconic graph and the visual aspects 
of the presentation. We are particularly interested in the relationship between the graph construc-
tion and editing activity and the multimedia authoring process. 

2.2  IconAuthor 

IconAuthor provides a visual programming editor in which the control icons closely correspond 
to typical programming language functions such as loop, if-then, and subroutine. The icons are 
single function, with several composition icons provided to build reusable collections of icons. 
Each icon’s function is accessed through an associated content editor. The content editor for 
every icon has the same appearance, making it easy to use. There is a drag and drop window 
which contains the current graph; several graphs can be opened simultaneous. Editing functions 
are available through a set of pull-down menus; an icon ribbon provides quick access to fre-
quently used functions.  A set of integrated tools is included for text, graphics, animation, image 



Buford and Heines ED-MEDIA 93 

–  5  – 

editing, and video control.  These tools can be invoked from either the associated icon or the 
pull-down menus. 

2.2.1  Function and Semantics 

The icons are single function, with several composition icons provided to build reusable collec-
tions of icons. These are grouped in the following families: 

• Flow: branches, if-then, loop, menu, module 
• Input: keyboard input, mouse input 
• Output: audio, structured graphics, erasure, graphics attributes 
• Data: database and file access, system variables, built-in math and string functions 
• Multimedia: audio, video card, video player 
• Extensions: DDE and DDL interfaces, subroutine, a help facility, RS-232 control 
• Custom: user defined icons 

2.2.2  Human Factors 

There are a large number of icons, but because the icons are primitive in function, they are easy 
to learn.  The tool does not enforce any specific programming discipline, so it is quite possible 
for an author to create complex unstructured graphs.  Because the icons are primitive in function, 
graphs tend to be large and hard to inspect.  Although the tool provides techniques for managing 
the size of the graph, the author must still think at a relatively low-level of icon function during 
editing. 

The graph area can be scaled, making it easier to navigate large graphs.  Groups of icons can also 
be collapsed or expanded as desired, helping to control graph complexity.  The icon ribbon 
makes a number of frequently used operations quite accessible.  IconAuthor provides an exten-
sive on-line help facility. 

2.3  Authorware 

Authorware is a visual programming system for Windows and Macintosh systems.  It is based on 
PCD3, a project originally undertaken at Control Data Corporation.  Authorware uses a flow-
chart visual programming paradigm.  The author drags icons from an icon palette onto a flow 
line to specify the flow of control through the program.  Each icon has a number of parameters 
that are set through dialog boxes, to which the author gains access by double clicking the icon.  
The beauty of Authorware is in the low number (seven) and apparent simplicity of its icons, al-
though this simplicity can be deceptive due to the large number of options provided through dia-
log boxes.  Authorware supports standard multimedia extensions, integrating them into the visual 
programming system with exceptional smoothness. 

While Authorware provides a wide array of facilities, it is difficult to extend. The attractiveness 
of this system is in its high degree of attention to human factors and the consequent elegance of 
its implementation. It is easy to learn and a pleasure to use. Its main drawback is one shared by 



Buford and Heines ED-MEDIA 93 

–  6  – 

all visual programming systems: when programs become complex, the difficulty in managing the 
icon network increases geometrically. 

2.3.1  Function and Semantics 

Authorware is based on a procedural model. Its seven icons are: display, erase, wait, calc, interac-
tion, decision, map (a collection of other icons).  Of these, the interaction and decision icons are the 
most deceptive, as they provide a huge amount of functionality through extensive use of options 
specified in dialog boxes.  In addition, these two icons actually introduce sequences that tie to-
gether combinations of the other five icons in a structured manner.  For example, the interaction 
icon can be used to accept mouse or keyboard input, analyze click locations, strings, and num-
bers, and provide conditional feedback for any number of alternatives.  The decision icon can be 
used to control program flow in a simple if/then manner or through timed or numbered iterations. 

The calc icon is also deceptive.  It can indeed be used to set and retrieve values of variables and 
perform computations, but it also acts as the interface to other programs via DDE and DDL.  We 
have seen some Authorware programs that are up to 30% calc icons, which somewhat defeats the 
purpose of the visual programming paradigm.  The syntax of statements in calc icons is C-like, 
but unfortunately only 424 characters are allowed, making it difficult to write substantial rou-
tines. 

Authorware contains a number of sophisticated options on icon functionality that can be difficult 
for the new user to grasp.  For example, calculations can be “attached” to other icons without the 
need for calc icons.  The functionality of an interaction icon includes a required display, which 
can be annoying when one wants to enter began an interaction sequence without changing the 
current display.  The order in which interaction tests are carried is critical, and can cause inter-
esting problems in some complex interaction sequences. 

All in all, these semantic difficulties are not difficult to master; they just take time.  To a pro-
grammer used to straightforward textual function calls, however, the specification of visual algo-
rithms can be tedious.  We believe this to be a characteristic of all production visual languages, 
and one that needs to be addressed through additional study. 

2.3.2  Human Factors 

Authorware is particularly strong in the area of human factors. With only seven icons, the system 
has a distinctly “approachable” feel, especially to novice users. It is an easy system to try things 
out in, as undos are trivial. The system has an exceptional degree of consistency and is very 
smoothly integrated with its underlying window system (either Windows or the Macintosh). The 
system designers have taken particular care to address novice computer users with such charac-
teristics as allowing spaces in variables names. 

The main problems we see in Authorware are: 

• it forces a strict hierarchical structure (only one icon is allowed below interaction 
choices, although this icon may be a map icon) 



Buford and Heines ED-MEDIA 93 

–  7  – 

• windows cannot be scrolled vertically and are therefore limited to a maximum of about 
nine icons along the main flow line (although any of these may be map icons which may 
be nested to any depth) 

• calc fields only allow 424 characters and the grammar of if statements allows only one 
statement in the then and else clauses 

• maps are not true subroutines (each time a map is inserted it is a copy of the code is in-
serted; therefore, changing a visual algorithm that is used repeatedly may require that 
change to be made in many places) 

• no on-line help facility 

2.4  Summary 

Tables 1 and 2 summarize the comparison of these two tools for the categories of Functionality 
and Human Factors. 

Table 1.  Functionality and Representation Power 

Measure IconAuthor Authorware 

Icon Set Size Large Small 
Icon Set Functions Mixture of primitives and 

composition icons 
Multi-function control icons 

Icon Set Semantics HLL-like; flowchart Special 
Icon Set Extensibility Extensible Not extensible 
Hierarchy and Abstraction Discretionary; Multiple 

techniques: composite, 
subroutine, module 

Forced: non-scrollable 
windows; inability to expand 
interaction icons vertically; 
map icon 

Family Style Flowchart Special 
Semantics of Composition Follows high-level language 1. Loop in interaction icon 

2. Composition of sequencer 
and interaction 

Relationship of Presentation 
Structure to Graph Structure 

Low structural relation Low structural relation 

 



Buford and Heines ED-MEDIA 93 

–  8  – 

Table 2.  Human Factors of Visual Language 

Measure IconAuthor Authorware 

Visual Consistency High Very high 
Visual complexity and 
inspectability 

Because icons are more 
primitive in function, complex 
graphs can result.  This can be 
alleviated by use of modules 
and composites. 

Low for individual windows, 
but can be high for deeply 
nested maps. 

Graph size and relation to 
presentation function 

If composites are used, graph 
size can be kept low 

Average; many standard 
functions can be programmed 
using maps nested to only 1 or 
2 levels 

Use of color Color used for icons and 
background; some 
customization available 

Color not used in graph 
construction, but can be used 
extensively in displays 

Text Labeling Label icons Label graph 
Number of interaction steps 
needed to create something 

Slightly high, because indirect 
access to smart text and 
graphics editors through icon 
content editors 

Average, many choices 
provided in easy-to-use dialog 
boxes, especially for the 
interaction icon 

Number of interaction steps 
needed to modify something 

Slightly high, because of 
indirect access to certain 
editors 

Average, with some types of 
interactions difficult to 
conceptualize, but we see this 
as a standard visual program 
problem, not a unique 
characteristic of Authorware 

Debugging, in particular how 
debugging operations such as 
trace and breakpoint are 
integrated with the interface 

Difficult to find currently 
executing icon; can 
selectively enable and disable 
icons 

Good ability to jump to the 
icon controlling the current 
display, but no single step 
capability; excellent facility to 
insert stop and stop “flags” to 
control partial execution, but 
only one pair of flags can be 
inserted for any one run; can’t 
skip over or disable icons 

Support for authoring process Various icons for hierarchical 
design, and some predefined 
composite icons 

Good, use of “models” as 
program templates for 
standard operations, also 
ability to insert empty map 
icons as “placeholders” that 
will be completed later 

 



Buford and Heines ED-MEDIA 93 

–  9  – 

3.  Discussion 

Visual programming is still a relatively new field with many human factors issues yet unsolved. 
Basic to these issues are the level, scope, and extent metrics identified by Shu. While the visual 
programming paradigm is appealing to a wide range of users, it has drawbacks in a number of 
areas. 

• All visual programming systems use icons. Icon design is easy when metaphors are clear, 
but very difficult for specifying constructs like iteration and recursion. None of the sys-
tems we have discussed allow users to define their own icons, and this can have a signifi-
cant adverse effect on the visual readability of a visual program when most of its icons 
are subroutines (Authorware maps). Internationalization of icons is particularly difficult 
for abstract constructs. 

• All visual programming systems also use menus. Menu layout for complex systems in-
volves many decisions, the most important of which are what to name menu items and 
under which pulldown menu to place them. While there are some standards for common 
items, e.g., Undo, Cut, Copy, Paste, and Delete are typically the first five items on the 
Edit pulldown menu, application-specific items are often difficult to place. These prob-
lems are especially acute when developing for a cross-cultural audience. 

• Visual program layout is typically either fixed, in which icons are laid out in a grid like 
IconAuthor, or free, in which icons may be placed anywhere in a visual program palette. 
Note that Authorware appears to have a freer layout than IconAuthor, but in truth it is the 
same, because given the program position in which one wants to place an icon to perform 
a certain function, there is only one place on the screen where that icon can be placed to 
achieve that sequence. Fixed layouts initially seem more restrictive, but users of free lay-
outs often find that they spend a lot of time making their visual programs “look pretty,” 
and most often lay out their icons in a graphical style anyway. 

• Icons are typically connected using lines. On some systems, these lines may are fixed, 
while on others they are movable. Fixed lines are fine when visual programs are laid out 
in a grid-like manner as described above, but can be troublesome in systems that allow 
free icon placement. Once again we have the trade-off of apparent rigidity versus en-
hanced visual control. When connections can be moved, there must first be an algorithm 
that determines their initial placement. Movement must then be constrained or the con-
nections quickly degenerate into unintelligible “spaghetti” in which the connections are 
impossible to follow. 

• One of the most difficult human factors issues in visual programming is the management 
of programs with many—hundreds, if not thousands—of icons. It is not clear to us that 
visual programs with thousands of icons have yet been built. As the number of icons 
grows, it becomes increasingly difficult not only to “see” the entire program, but to find 
specific routines that one is interested in copying, modifying, or correcting. Authorware 
allows authors to group icons into subroutines, and IconAuthor provides the ability to 
zoom in and out. These techniques are indeed very useful, but they do not solve the entire 
problem. 



Buford and Heines ED-MEDIA 93 

–  10  – 

• Along the same lines, visual programs present numerous problems in the management of 
screen “real estate.”  Some systems allow the author to control icon sizes, but these can 
become too small to recognize. Window scrolling also helps address the issue. However, 
when one has numerous windows open with multiple visual programs and editing tools, 
these techniques can once again break down. Even when one iconifies windows to re-
move them from the immediate visual plane, one must still face the problem of finding 
the right icon to enlarge again. 

• Finally, visual programs are particularly difficult to track during program execution so 
that they can be debugged.  Some systems add animation to visual program execution, 
but this typically has a very high price in terms of system performance. Other systems al-
low the user to jump to the currently executing icon, but again this can be difficult if one 
doesn’t know exactly where an error is occurring. That is, an error which shows up when 
a dialog is displayed may be caused by any one of numerous icons that precede it in the 
execution sequence. 

4.  Benchmarks  

In this section we present an example benchmark for evaluating different multimedia authoring 
tools.  Benchmarks that we have used to compare tools include:  

• Sequential presentation  
• Menu-based presentation  
• Animated model  
• Interactive hypertext and hypermedia  

4.1  Graph Structure for a Sequential Presentation: Au-
thorware Professional  

The example is a simple program to present slides and 
allow the user to move forward and backward through 
the slides or quit at any time.  The Authorware structure 
of such a program for three slides is shown at the right.  
The slide content is placed in the interaction icons (the 
arrow-like icons labeled with question marks in the fig-
ure).  The first interaction, labeled “Quit setup,” sets up 
a permanent Quit button that appears on all slides and 
which, when pressed, exits the presentation.  

The interaction icon labeled “first” (highlighted in the 
figure) contains one push button labeled Next.  When 
this button is pushed, control passes to the map icon 
directly under the “first” label, after which it exits the 
first interaction and enters the next one. In this case, the 
map icon is empty.  (You need to have something for 
the interaction icon to do, and an empty map icon fills 
this syntactic need.)  

 



Buford and Heines ED-MEDIA 93 

–  11  – 

The icon labeled “middle” has two push buttons, labeled Previous and Next, respectively.  The 
one labeled Next has an empty map icon and works just like that in the previous interaction.  The 
one labeled Previous, however, has to explicitly jump to the previous icon, so a calc icon (the 
one labeled with an = sign) is used containing the statement:  

 GoTo(IconID@”first”)  

This syntax is a bit cumbersome—and certainly not visual—especially since the name of the 
icon to branch to must be a string constant and cannot be a variable.  However, Authorware is 
does update icon names embedded in calc icons if you happen to change the name of the icon.  
When we cut and paste icons to enlarge the slide show, however, we must open the calc icon and 
explicitly change the name of the previous interaction icon to go to.  We don’t have to do this for 
the Next button, because its map icon is simply a place holder and the built-in interaction icon 
functionality automatically goes to the next icon when the interaction exits.  

4.2  Graph Structure for Sequential Presentation: IconAuthor  

The sequential presentation in IconAuthor shown below relies on an index variable to specify the 
screen to display.   In this graph, successive screens are numbered 1, 2, 3, ...; at any point in the 
presentation, a branch forward is performed by incrementing the index variable and a branch 
backward is performed by decrementing the index variable.  Each screen has an equivalent sub-
graph structure, as shown for the first screen, where the graph has been expanded.   

 



Buford and Heines ED-MEDIA 93 

–  12  – 

After the screen contents are presented, two choices are activated.  Selecting a choice leads to 
the index variable being updated and control returns to the outermost loop.  For presentations 
with many slides, the branch lists should be broken into segments to facilitate insertion and dele-
tion.  The mechanism for branching is awkward because it relies upon numeric labeling.  Inser-
tion and deletion of screens requires reediting of indices.  Some type of symbolic branching 
support would be a significant improvement.  

5.  Summary and Conclusions 

The visual programming paradigm therefore presents a number of fascinating human factors 
problems, but none of these seems strong enough to stem the tide of interest in this appealing 
technique. We believe that the best visual programming systems will be those that allow a high 
degree of user customization to address these problems, such as defining one’s own composite 
building blocks with their own icons. In addition, these systems must allow users to break out to 
standard computer languages when textual approaches are more efficient. Like many program-
ming tools, we believe that visual programming has great promise for multimedia authoring, but 
we do not want to be locked into using this paradigm when others are more efficient. 

6.  References 

AimTech Corporation, 1991.  IconAuthor User Manual.  Nashua, NH. 

Authorware, Inc., 1989. Authorware Professional Manual.  Redwood City, CA. 

Chang, S.-K.  Visual Languages: A Tutorial and a Survey.  IEEE Software.  Jan. 1987. pp. 29-
39. 

Kieras, D.E.  Towards a Practical GOMS Model Methodology for User Interface Design, in 
Handbook of Human-Computer Interaction (ed. Helander, M.), Elsevier, 1988, pp. 137-157. 

Buford, J., Rutledge, J., and Heines, J.  Visual Programming Abstractions for Interactive Multi-
media Presentation Authoring.  Proceedings of the 1992 IEEE Workshop on Visual Languages. 
1992. 

Shu, N.C., 1988.  Visual Programming.  Van Nostrand Reinhold, NY. 


