Machine-Mediated Learning, Vol. 2, pp. 239250 0732-6718/88 $3.00 + .00
Printed in the UK. All rights reserved. Copyright © 1988 Taylor & Francis and Mentor Systems, Inc.

The Development of a Software Teaching Tool

JESSE M. HEINES
STUART SMITH

University of Lowell
Department of Computer Science
Lowell, Massachusetts 01854

Abstract This paper discusses the development of a software teaching tool that
teachers can use to create exercises adapted to the needs of their curricula and indi-
vidual students. It explains how we assessed the teaching needs for a program in adult
literacy and describes the tool we developed to present teacher-created exercises on a
computer equipped with a voice synthesizer and audio digitizer.

Teaching Machines vs. Teaching Tools

Any device or technique that facilitates teaching can be referred to as a teaching tool.
Books are teaching tools, as are chalkboards, movie projectors, writing slates, and even
pencils. While some would extend this list to include such devices as hickory sticks, all
would agree that the range of devices and techniques that creative teachers can use to
expand their capabilities is virtually boundless.

The factor common to successful teaching tools is that they are usable within a
teacher’s traditional purview, in his or her classroom and under his or her control. None
is a teaching machine, designed to be used independently of the teacher. Nonetheless, the
market is replete with ‘‘educational’’ computer programs that purport to teach without
teachers. Many of these programs are indeed excellent examples of instructional tech-
nology, yet it is a sad fact that most gather dust in teachers’ filing cabinets because they
are difficult to integrate into existing curricula. While teacher training is certainly a factor
in this dilemma, the programs themselves are also to blame because they operate in a
fixed format with a fixed strategy on fixed subject matter. Even teachers who can pro-
gram are unable to adapt them to their specific classroom needs.

Teaching Tools and Generative CAI

This paper describes a different approach to developing software teaching tools: the
development of a tool that allows teachers to build exercises adapted to the needs of their
curricula and individual students. The tool we developed can be considered an example
of generative CAl in the original sense of the term proposed by Utah [1] in that it uses
algorithms to produce lessons from high-level lesson descriptions supplied by the
teacher. However, unlike such generative systems as “‘ILIAD’’ [2], ‘‘Latin Skills’’ [3],
“PUNCT2-CW”’ [4], ““MALT"’ [5], ‘“COMSEQ"’ [6], and Bales’ music dictation
system [7]—systems which can produce many different lessons from one set of teacher
inputs—this tool produces exactly one lesson from a set of inputs. Thus, the tool repre-
sents the *‘limiting case’’ of generative CAI.

239

240 J.M. Heines and S. Smith

The essential difference between our tool and generative CAI systems like the others
mentioned above lies in the characteristics of the knowledge-bases and the lesson genera-
tion/presentation facilities provided. In the other systems, a fixed knowledge-base on a
single topic (e.g., English or Latin grammar, punctuation, machine-language program-
ming, digital logic, common practice harmony) is coupled with a lesson generation/pre-
sentation program that can produce many exercises on that one topic. In our tool, a
knowledge base on any appropriate topic is entered interactively by the teacher. This
knowledge-base is coupled with a lesson generation/presentation program that produces a
single lesson on the selected topic but with options that allow the teacher to tailor the
appearance and behavior of the lesson to meet specific instructional requirements.

The remainder of this paper explains how we assessed the teaching needs for an adult
literacy program and describes the tool we developed to present teacher-created exercises
on a computer equipped with a voice synthesizer and audio digitizer.

Assessing Teaching Needs

The main school we worked with had an established adult literacy program that was
serving approximately 120 students. Many of their instructional materials were created
by the teachers, and active teacher involvement in the curriculum was a large part of the
school’s personality. This school was a participant in a partnership study that provided
them with a personal computer laboratory. Each computer in the laboratory was equipped
with a voice synthesizer and an audio digitizer so that instructional programs could
“‘speak’’ to students and ‘‘read’’ them information that appeared on the screen.*

The school had access to a number of high quality, externally-produced computer-as-
sisted instruction (CAI) programs that took advantage of the computer’s speech capabili-
ties, but none of these programs fit precisely into their curriculum. We were therefore
asked to assess the school’s teaching needs and to devise a plan for better use of the
computer laboratory in the school’s curriculum. We began by talking to the teachers.

The teachers showed us a number of worksheets similar to that in Figure 1, which
was used to present the concept of root words and demonstrate how root words may be
changed when endings are added. Such presentations led into exercises such as that
shown in Figure 2, which helped students practice these skills.

The teachers had also developed a series of exercises that asked students to tell
whether adding certain suffixes to specific root words created meaningful words. An
example of this type of exercise is shown in Figure 3. Finally, the teachers told us that
they also taught ‘‘sight words,’” i.e., words that appear so frequently that good readers
recognize them immediately on sight. Examples of sight words are listed in Figure 4.
These figures represent but a very small sample of the materials the teachers had devel-
oped.

The teaching need, then, was not for another CAI program, but for a tool that
teachers could use to implement their own exercises on the computer systems. The tool
needed to be easy to use, of course, but it also needed to be flexible enough to allow
teachers to create a large variety of exercises. As the reader will see in the ensuing

*The software described in this paper is in use at several test sites. However, it is not yet available
for acquisition by other individuals or educational institutions. We apologize for not being able to
report the names of the schools we worked with or the company that provided the computer labora-
tory, but the company made such anonymity a condition of our being able to publish this work.

The Development of a Software Teaching Tool

Wo
Roo-\ \\lorA —Re?:,\; }'\':\3:(3 ’RZ?\:T'A grd
. sully silLest
2. tiny tinier
3. Crazy Crozier
4. dizzy dizziness
5. braun brainiest
e taste tosty +ustier
1. luck \uck\[luckicst
5. sleee s leepy sleepiness
9. destroy | destrover
. CoPY copier co?\[]nﬁ
n. dey dr.lér‘ de y‘\ns
12. glory g(or'uou.s

Figure 1. A teacher-made sheet for presenting the concept of root words.

discussions, the flexibililty of the resultant tool actually stimulated teachers to create new
types of exercises that they had not previously envisioned.

Designing the Tool

Review of the materials created by the teachers revealed a consistent pattern. With a
few exceptions, the exercises could be set up as matrices—two-dimensional tables—
with letters or words along the left and top axes and the result of combining these letters
or words in the corresponding matrix cells. This pattern provided us with a powerful yet
easily understood instructional paradigm. We therefore began the design of our tool
based on the construction of word matrices, and we determined what information
teachers needed to provide for the computer to build a word matrix exercise. -

The basic components of the matrix are the axis elements and the contents of the
intersecting cells. Since the axis elements could be any characters, we designed the
‘‘what-you-see-is-what-you-get”” (WYSIWYG) editor shown in Figure 5 (the | char-
acter represents the cursor). To enter an element along either axis, teachers used the
arrow keys to position the cursor in the appropriate axis cell and then typed the characters
to appear in that cell. A new row or column of cells could be created by positioning the
cursor on the line between two rows or columns and pressing the Ins key. As new rows
and columns were created, the screen was redrawn. Columns expanded and contracted
automatically as characters were typed and deleted. Additional editing options are shown
in the KEY/ACTION Help Window in Figure 5.

To specify cell contents, we created the second WYSIWYG editor shown in Figure 6.

242 J.M. Heines and S. Smith

DIRECTIONS - Add endings to the root word. Remember that in
all cases you must first drop the t, add an i, and then
add the ending.

Example: happy - happier, happiest, happiness

Root Word er est ness

1. funny

2. sunny

3. needy

4. nutty

5. lazy

6. ready

Figure 2. A teacher-made exercise on root words.

(In this figure, the box in the first cell represents the reverse video cursor.) The numbers
at the bottom of the screen represent the rules for forming cell contents. In Figure 6, Rule
2 has been applied to all cells in the matrix. This rule says that the cell contents are
formed by doubling the last letter of the characters at the side and appending the char-
acters at the top. This rule is appropriate for all cells except the first, which requires Rule
11: change the last non-word-terminating vowel in the characters at the side to a and do
not append the characters at the top. The complete set of grammatical cell formation
rules is as follows:

(1) add the characters at the top to the characters at the side (side + top), e.g., ‘‘sing”’
at the side + ‘‘ing’’ at the top forms ‘‘singing’’

(2) double the last letter of the characters at the side and add the characters at the top,
e.g., “‘run’” + ““ing’’ forms ‘‘running’’ and ‘‘chap’’ + ‘‘ed’’ forms ‘‘chapped”’

(3) drop the last letter of the characters at the side and add the characters at the top,
e.g., “‘take’” + ‘“‘ing’’ forms ‘‘taking,’’ and note that this rule also allows *‘full”’
+ “ly’’ to form ““fully’’ and ‘‘face’” + “‘ed”’ to form ‘‘faced”’

(4) add e to the characters at the side and then add the characters at the top, e.g.,
“‘class’ + ‘‘s’’ forms ‘‘classes’

The Development of a Software Teaching Tool 243

Can you add Can you add
-less to the -ful to the

root word?

root word?

Add -ness to

the two forms of
words you have just
made.

1. care
2. use
3. help
4, fear
5. pain
6. color
7. harm
8. need
9. form
10. hate
11. love
12. weight

Figure 3. A teacher-made exercise on suffixes.

(5) drop the last letter of the characters at the side, add i, and then add the characters at
the top, e.g., “‘happy”” + “‘ly”’ forms ‘‘happily”’
(6) drop the last letter of the characters at the side, add ie, and then add the characters at
the top, e.g., “‘try’” + ‘‘s’’ forms *‘tries’’

Sight wordg

C.Jmn
18
ace
t
she
the
3e+
‘o
&€

for

Figure 4. A teacher-made sheet for presenting sight words.

244 J.M. Heines and S. Smith

KEY ACTION
Esc switch to submenu
ed |ing FS say current cell
F6 spell current cell
1. |run Home go to left margin
End go to right margin
2. |hop up arrow move cursor up
down arrow move cursor down
3. |skiFll left arrow move cursor left

right arrow move cursor right
PgUp scroll up
Pgdn scroll down
Ins insert new row/column
(cursor on boundary)
Del delete row or column
(cursor in cell)
any letter insert letter in cell

Press any key to continue.

) Resume Go On Main Menu Help Quit
Use the arrow keys to move the cursor to the position you wish to edit.
Press Esc to select one of the subcommands in the lower portion of the screen.

Figure 5. What-you-see-is-what-you-get axis element editor and its help window.

(7) drop the last letter of the characters at the side, add ve, and then add the characters
at the top, e.g., ‘‘leaf”” + ‘‘s’’ forms ‘‘leaves’’

(8) drop the last two letters of the characters at the side, add ve, and then add the
characters at the top, e.g., “‘life’” + ‘s’ forms ‘‘lives”’

ADDING -ED AND -ING

ed ing
KEY ACTION
1. |run {runned]|running Esc switch to submenu
FS say current cell
2. |hop |hopped |hopping F6 spell current cell
Home go to left margin
3. |skip |skipped|skipping End go to right margin

up arrow move Cursor up
down arrow move cursor down
left arrow move cursor left
right arrow move cursor right
Pgup scroll up
PgDn scroll down

Press F1 for explanation of colors.

Press any key to continue.

Clear 1 2 3 4 5 6 7 8 9 10 11 12 Irregular (more options)

Resume Go On Main Menu Help auit
Use the arrow keys to move the cursor to the position you wish to edit.
Press Esc to select a rule or subcommand from the lower portion of the screen.

Figure 6. WYSIWYG cell contents editor and its help window.

The Development of a Software Teaching Tool 245

(9) use only the characters at the side without appending the characters at the top, e.g.,
‘‘sheep’” + ‘‘s’’ forms ‘‘sheep”’

(10) change the last non-word-terminating vowel in the characters at the side to ¢ and do
not append the characters at the top, e.g., “‘blow’” + ‘‘ed’’ forms ‘‘blew’’

(11) change the last non-word-terminating vowel in the characters at the side to a and do
not append the characters at the top, e.g., ‘‘become’ + ‘‘ed’’ forms ‘‘became’’
and “‘run’’ + ‘‘ed’’ forms ‘‘ran’’

(12) add the characters at the side to the characters at the top (top + side)—this rule is
used for prefixes

One very important rule that appears in Figure 6 is missing from the above list: the
“Irregular’’ rule. This rule allowed teachers to specify the contents of a cell directly
rather than through the use of a pre-programmed rule, thus enabling them to make ma-
trices for virtually any subject matter. Consider, for example, a matrix in which students
are to give the results of mixing primary colors. Although we have no rule for ‘‘blue +
yellow = green,’’ a matrix containing this rule could still be built by highlighting the cell
at which the elements ‘‘blue’’ and ‘‘yellow’’ intersect, selecting the ‘‘Irregular’’ rule,
and then typing ‘‘green.”’

These two WYSIWYG editors, together with an overall menu system that allowed
teachers to move from one editor to another, vere the basic components of our initial
design. We also built a program for students which presented matrix exercises that
teachers built. As teachers began to use the tool, however, their creativity spawned re-
quests for more and more options and greater control of the matrix presentation strate-
gies. For example, at teachers’ requests we implemented the following arithmetic cell
formation rules:

S + T add the number at the top to the number at the side (integer addi-

tion)

T — S subtract the number at the side from the number at the top (integer
subtraction)

S — T subtract the number at the top from the number at the side (integer
subtraction)

S*T multiply the number at the side by the number at the top (integer
multiplication)

S/IT divide the number at the side by the number at the top and return
both the quotient and remainder

T/S divide the number at the top by the number at the side and return

both the quotient and remainder

The next section recounts how we expanded our original design to meet needs that
teachers identified as they worked with the tool.

Expanding the Tool

The matrix paradigm turned out to be extemely flexible, especially after options were
added to control how the matrix was displayed and what the computer did as students
moved from cell to cell. Matrix display was controlled by the Layout options shown in
Figure 7. Teachers selected options by moving a highlighting bar (indicated by the box in
Figure 7) to scroll through the choices and pressing RETURN to make a selection. For
example, moving the highlighting bar to *‘Grid color’’ and pressing RETURN caused

246 J.M. Heines and S. Smith

ADDING -ED AND -ING

LAYOUT OPTIONS

Field Value
File name ERING1.DAT
Number of characters per line 80
Exercise title (text shown on top line)
| Side element display status visible |
Cursor movement student-controlled
Registration of students of f
Screen Background color Black (0)
Grid color Cyan (3)
Axis element color Yellow (14)
CeLl content color white (15)

Grid Color Axis Color Cell Color

Resume Go On Main Menu Help Quit
Highlight a field and press ENTER to change its value. Press Esc to select
one of the four subcommands in the lower portion of this screen.

Figure 7. Exercise layout options menu.

““Cyan (3)”" to change to ‘‘Red (4)’’ with a corresponding change in the representative
color bar just below the color options. For options without fixed choices, like ‘‘File
Name’’ and ‘‘Exercise title,”” teachers would be prompted to enter a string and press
RETURN.

At the teachers’ suggestions, we added the two options *‘Side element display status’’
and ‘‘Cursor movement.’’ Side element display status could be either ‘‘visible,”’ the
normal case, or ‘‘hidden,”’ to accommodate sight word exercises. In the latter case,
teachers could specify words as side axis elements, but they wouldn’t appear on the
screen. Students could then hear these words spoken by the voice synthesizer and prac-
tice spelling them without the benefit of any on-screen cues to the right answer. For the
cursor movement option, we allowed teachers to specify whether movement of the cursor
to the cell to be filled in next was to be under program or student control. We had
originally programmed cursor movement to be under student control, but our interaction
with the teachers indicated that it was sometimes preferable for the cursor to move auto-
matically to the next cell after the student had responded. We therefore gave the teachers
the options ‘‘student-controlled,”” where students could use the arrow keys to move the
cursor, ‘‘auto-horizontal,”” where the cursor moved automatically to the next cell to the
right, and ‘‘auto-vertical,”” where it automatically moved to the next cell down.

What the computer did as students moved from cell to cell was determined by the
Actions options shown in Figure 8. Virtually all of these options were the result of our
interactions with teachers as they used the word matrix development tools. We had
“‘hard-coded’’ one version of many of the actions listed in Figure 8, but teachers indicated
that they needed alternate actions and that they needed to be able to change the matrix
actions for different exercises. Thus, for example, we allowed teachers to select one of
ten actions for the program to take when a cell was highlighted:

e don’t do anything

The Development of a Software Teaching Tool 247

ACTION OPTIONS

Field ’ value
Action to take when cell is highlighted don't do anything
Wait for student to enter cell response? yes
Text to say for correct answers “"Yes, that is correct."
TExt prefix to say for incorrect answers "No, that is not correct."
TeXt suffix to say for 1st incorrect answer "Please try again. You ..."
Text Suffix to say for 2nd incorrect answer “please try again. You ..."
| Present "cell group" query? no |
Cell group choice Y/N
PRompt for “cell group" query “Is this box correct? Yes or No: "
Text tO say for correct Y response "Yes, this box is correct."
Text to saY for correct N response Yes, this box is not correct."
Text to say For incorrect Y response No, this box is not correct.®
Text to say for Incorrect N response "No, this box is correct."

Resume Go On Main Menu Help Quit
Highlight a field and press ENTER to change its value. Press Esc to select
one of the four subcommands in the lower portion of this screen.

Figure 8. Exercise actions options menu.

say the correct response

spell the correct response

say and spell the correct response
say the side element

spell the side element

say and spell the side element
say the top element

spell the top element

say and spell the top element

Because teachers also wanted to be able to set up ‘‘demonstration’’ exercises, we pro-
vided a way for the program to fill in the answers for cells automatically. This feature
was selected by changing the ‘“Wait for student to enter cell response?’’ option to ‘‘no.”’
Likewise, we made all of the synthesized voice messages into variables so that teachers
could change them.
One of the biggest program enhancements that teachers requested was the addition of
a second query that could appear after the cell had been filled in. This feature was
selected by changing the ‘Present ‘“‘cell group’” query?’ option to ‘‘yes.’’ (This option is
boxed in Figure 8.) We originally designed this feature to accommodate exercises such as
that shown in Figure 3, where the program asked ‘‘Is this a real word?’’ and the student
would respond ‘‘yes’’ or ‘‘no.”’ Teachers came up with so many different ways to use
this feature, however, that we implemented several ‘‘cell group’’ choices: yes/no, true/
false, A/B, and 1/2. Of course, this change meant that the prompt for the cell group query
as well as the text that the program would say for correct and incorrect responses had to
be under teacher control. While there were defaults for the prompt and for all of the texts,
these could be changed by selecting the appropriate options in Figure 8.
The final major component of the word matrix development tool was a facility for

248 J.M. Heines and S. Smith

creating digitized spoken messages. Once again we provided a menu-driven system.
Teachers selected the message they wanted to work with and then specified whether they
wanted to change, hear, or clear (delete) that message. If they wanted to change it, they
could select the system default message to be ‘‘spoken’’ by the voice synthesizer, type
their own message to be ‘‘spoken’’ by the synthesizer, or record a message by speaking
through a microphone connected to the audio digitizer. Digitized speech was played back
through the same audio output facility used by the speech synthesizer. Figure 9 shows the
screen during the recording of a message. The third-level submenu is at the bottom of the
screen.

Our original design called for teachers to be able to record only the messages to be
read when students begin and end an exercise. Work with the teachers revealed the need
for a message to be read when students terminated the exercise before they had completed
it. In addition, the teachers wanted to be able to change the help messages for all of the
cell formation rules. Therefore, we made these available as well.

As the creation of matrices became more complicated, teachers identified the need for
a facility to make sure that all matrix parameters were specified and that they were logi-
cally consistent. Consequently, we implemented a check on the integrity of the matrix as
a top level command of the word matrix development tool. In addition to these major
facilities, the tool had facilities to store and recall exercises, to allow teachers to try
exercises, and to review data gathered during student use of the exercises.

Making the Tool Truly Generative

The word matrix tool could be modified to do generative CAI in the usual sense. The
two major components of the knowledge-base of any generative CAI system—a dic-
tionary of facts and a set of rules for manipulating the facts—are managed in the word

EXERCISE MESSAGES FACILITY

Introduction Message
Data File: ERING1.INT

Changing Current Message

RECORDING
Press any key to stop recording.

Recording Time: 0:06

SPEAK NOW

System Default Type

Last Menu Main Menu Help Quit

Highlight the input device you wish to use and press ENTER.

Figure 9. Exercise message recording facility.

The Development of a Software Teaching Tool 249

matrix tool by semi-independent modules. Although each module obtains its component
of the knowledge-base interactively from the teacher, there is no reason why these
modules could not be modified to select facts and rules from a pre-stored knowledge-
base. With this modified word matrix tool a teacher could, for example, create many
spelling-bee type exercises by:

(1) requesting that the system randomly select the desired number of words from its
dictionary

(2) specifying that each word be ‘‘spoken’’ by the speech synthesizer but not displayed
to the left of the corresponding answer box on the screen (this behavior is already an
available option in the word matrix tool)

Arithmetic drills could be generated in a similar fashion by having the word matrix tool
apply the rules of integer arithmetic, which are already part of its knowledge-base, to sets
of random integers.

Teachers’ Reactions

The word matrix tool was used by teachers during the 19871988 winter months in
adult literacy programs in New York and Philadelphia. One teacher created over 30
exercises, while others generally created one or two. The range of exercises that teachers
created was quite large. One teacher created an exercise on the names of metric units
(centimeter, decimeter, etc.), where students simply moved the cursor from one cell to
another to hear the computer ‘‘read’’ the names of the metric units. Another teacher
created an exercise on binary numbers with powers of 2 across the horizontal axis and
decimal numbers along the vertical axis. Students indicated the binary equivalent of the
decimal number by entering 1 or O in each cell. Teachers even tried to create multi-lan-
guage exercises, such as ones in which Spanish words appeared along the vertical axis
and students were to enter the equivalent English translations. They reported that Spanish
to English worked well since the computer was generally asked to speak the word typed
in English, but English to Spanish was not as effective, because when the computer was
asked to speak a Spanish word students reported that it sounded like a “‘gringo!”’

Teachers in both programs pointed out the need for additional teacher training. We
discovered that even teachers who are computer-literate need help in devising ways to
link computer-delivered exercises with their classroom lessons. Not surprisingly, the co-
ordinator of one program told us that the greatest factor in the success or failure of
applying the word matrix tool was teacher enthusiasm. Classes of some teachers didn’t
want to use the computers at all, she reported, while classes of others didn’t want to stop
using them.

Both adult literacy programs that tested the word matrix tool are staffed by part-time
as well as full-time teachers. For this reason, it was often days or even weeks between the
times that teachers could find to use the word matrix tool. During these delays teachers of
course had trouble remembering the many aspects of the tool, but they told us that re-
learning time was virtually eliminated by the clarity of the hierarchical menu structure.
Teachers at both sites reported that it took time to ‘‘get into’’ the tool, but that once they
had learned to use it effectively, the hierarchical program structure allowed them to go a
long time without using it and still take over virtually from where they left off whenever
they decided to return. ‘‘If you call some of the other programs we use around here
‘user-friendly,” *’ one teacher told us, ‘‘you’d have to call this program ‘user-lovable!” *’

250 J.M. Heines and S. Smith

Learning From Our Experience

Many developers have written about the need for an iterative design-implement-test
cycle in software development. When working with teachers, the need for such a cycle
appears to be even more critical, because many teachers cannot foresee the full potential
of a software tool until they begin to work with it. Likewise, it is difficult for developers
to foresee the myriad ways in which a software tool might be used until it is integrated
into the classroom environment. A close relationship between teacher and developer is
critical.

We believe that the success of this project was rooted in its emphasis on the develop-
ment of a flexible teaching fool that teachers could easily integrate into their curricula,
rather than a teaching machine with fixed CAI applications. We also had the luxury of
working with teachers who were experts in their fields, highly receptive to using CAI in
their classrooms, and truly creative in developing matrix exercises.

References

1. Uttal, W., T. Pasich, M. Rogers, and R. Hieronymus. 1969. Generative computer assisted
instruction. Communications 243. Mental Health Research Institute, University of Michigan,
Ann Arbor, MI.

2. Bates, Madeléine, Jack Beinashowitz, Robert Ingria, and Kirk Wilson. 1981. Generative tu-
torial systems. Proceedings of the 1981 Conference of the Association for the Development of
Computer-based Instructional Systems (ADCIS), 12-21. Bellingham, WA.

3. Culley, Gerald R. 1987. Generative CAl for Latin: assessing a ten-year project. Proceedings of
the 29th ADCIS Conference, 229-233. Bellingham, WA.

4. Freed, Michele M. 1970. Generation of punctuation and usage exercises in freshman English
using a sentence pool. PUNCT2-CW Technical Report No. 6 ERIC Document No. ED 084
880. Alexandria, VA.

5. Blount, Sumner E. 1972. A generative CAI monitor for teaching machine-language program-
ming. ERIC Document No. ED 078 647. Alexandria, VA,

6. Koffman, Elliot, Sumner Blount, Thomas Gilkey, James Perry, and Martin Wei. 1972. An
intelligent CAI monitor and generative tutor: an interim report. ERIC Document No. ED 078
681. Alexandria, VA.

7. Bales, W. Kenton. 1980.. A model for generative harmonic dictation. Educational Resources
Information Center (ERIC) Document No. ED 194 057. Alexandria, VA.

