THE CBT ART:

The Right Stuff

What does it take to excel at courseware development? Where did
today’s masters come from2 Where will they come from tomorrow?

JESSE M. HEINES

Jesse Heines is an

! assistant professor
of computer science
| at the University of
Lowell. Dr. Heines
also conducts
workshops and
consults on
designing and
authoring
computer-based
training programs.
He is the author of
Screen Design
Strategies for
Computer-Assisted
Instruction (Digital
Press, 1984,
Bedford, MA).

Any discussion of training must

hen I look around at the courseware

developers I consider masters, a few things

quickly become apparent. Most, for
instance, come from technical backgrounds rather than
from education or instructional development. They
have degrees in the pure and applied sciences or other
fields quite unrelated to the development of
courseware. Many of them are college or university
educators, however, and have a history of using media
in their classes, sometimes in the form of
individualized instruction, sometimes simply as an
enhancement to more traditional lecture or classroom
instruction.

How does their technical background help? For one
thing, a strong technical background usually lets
master developers function as their own subject-matter
experts. They are able to do their own task analyses
and they possess the knowledge to fill in the technical
details.

Another thing you notice about today’s courseware
masters is their ability to design attractive computer
displays, a talent not explained by their technical
backgrounds. Where does this innate creative flair and
eye for design come from?

One answer might be the willingness of exemplary
courseware developers to scrutinize and learn from the
work of others.

In my own case,
T've discovered

begin with a task analysis. What are the

that every piece
of courseware I

major skills that one can reasonably

have looked at—
no matter how

expect a CAl/CBT developer to possess?

poorly designed—
has had at least
some “redeeming
social value” (to borrow the words of the Supreme
Court), and has taught me something either positive or
negative about display techniques.

(The PLATO community of courseware developers,
for example, was a tightly knit group that constantly
shared and critiqued each other’s courseware. They
still do. Not surprisingly, the best developers I've
worked with always had PLATO experience.)

N
W

Authorware Magazine / THIRD QUARTER 1989



N
o

Authorware Magazine / THIRD QUARTER 1989

Another distinguishing characteristic of
master developers is that they are
programmers as well—but most
came to programming only
because it served as
a tool for imple-
menting their
instructional
designs. Their
philosophy:

The better one
can program, the
more faithful one can be
to one’s original design. Design
faithfulness implies not having to T
compromise a particularly good
instructional technique because it is

hard to implement. Not all master developers are

master programmers, to be sure, but they know enough

to ask the right questions of master programmers and
not to accept “it can’t be done” as an answer. No
programmer worth his or her salt
will tell you that something can’t
be done; they’ll tell you which
things can be done easily and
which will take more time.

Two more characteristics of
master developers—the ability to
design tests and the ability to
evaluate program effectiveness—
are easy enough to “buy” from
another party (indeed, many of
the original PLATO developers
used in-house specialists in these areas rather than
relying on their own expertise). But like programming,
the more one knows about test construction and
statistical analysis, the better one will be at improving
courseware from the feedback that these instruments
provide.

The last major characteristic of master developers
is experience. All master CAI and CBT developers can
show you examples from their courseware that are
“wrong,” that is, things that they would have done
differently if they “knew then what they know now.”
There is simply no substitute for developing lots of
courseware and evaluating its effectiveness with a
variety of students. As one of my best friends likes to
say, “I reserve the right to be smarter tomorrow than I
am today!”

How Tomorrow’s Master Developers Might Learn the Trade

The learning process today’s masters went through
is as valid now as it was then. The problem many
developers face, possibly yourself, is time. If a formal
course of study is not available at your university or
place of employment, I recommend the following

ILLUSTRATION BY MARK SIMONSON

A strong technical background usually lets
r;lroster”dre\)élic;pers function as their own
subjectmatter experts. They are able to
do ’raskrdncri’l}'/ses and possess the

knowledge to fill in the technical details.

methods to decrease the time needed to learn the trade:

¢ Study as many CAI and CBT programs as you
can and use your own judgment as to which screen
displays and student/computer interactions are
interesting and informative and which are not. Look
especially at programs written for systems other than
the one that you will most likely develop courseware
for. Developers who work primarily on IBM systems
should look carefully at Macintosh courseware and vice
versa, and both should look carefully at the Amiga.
Every system has capabilities that make some
techniques easier to implement than others, but one
can achieve very interesting effects by simulating in
software techniques what another system has in
hardware. Developers familiar with only one system
often develop tunnel vision that limits their creativity
and makes their courseware repetitive and boring. If
possible, spend time at a PLATO site going through
some of the classic lessons as well as the newer ones
developed at that site.

¢ Learn as much as you can about computer
programming. Despite the ease of today’s authoring
systems, all authoring involves programming concepts



such as data storage, branching,

No programmer worth his or her salt

iteration (looping), and
modularization. Knowledge of
these concepts will help you

will tell you that something can't be done;

develop more varied and
interesting courseware

they'll tell you which things can be done

regardless of the authoring
system you use.

* Take instructional design
courses offered as practicums so that you get maximum
feedback from your instructor on the materials you
develop. This is an excellent way to gain a relatively
large amount of experience in a short time, even
though the feedback will be from a specialist rather
than from actual students. Work on individualized
lessons without the computer to concentrate on
presentations and interactions without having to deal
with the complexities of actual lesson authoring. Study
other students’ work carefully to learn from their
creativity and from their mistakes.

* Read the few books on courseware development

easily and which ones will take more time.

of CAI/CBT development, and you must learn early
how to build your courseware so that it can be easily
revised.

Your Turn

What do you think? Do you agree with my ideas or
does your company or university have a better plan?
What have you found useful and what a waste of time?
What do you wish you had more time to study? I am
especially interested in hearing the details of formal
industrial or university programs designed to train CAI
and CBT developers.

available, even though some will be relatively out of

date. Kearsley, Steinberg, Hofstetter, and Bork are

among the more prolific authors who have written

materials readable by beginners.

¢ If you can, take training seminars that offer
hands-on experience. I recommend such seminars over

Please write or send me materials on your program:

Jesse M. Heines

The CBT Artisan

the lecture kind for two reasons. First, I think you will

learn better when you try to
implement the techniques being
discussed, even if you are
unfamiliar with the seminar’s
authoring system. Second, I find
that those instructors who offer
hands-on experience are usually
more experienced themselves and
provide more practical advice
than those who espouse theory
without at least showing
courseware that demonstrates
those theories. If seminar
instructors don’t use media in
their presentations, how much
can they really know about using
media in CAI and CBT?

* Go ahead and start
developing your own courseware
as soon as possible. Pick your
favorite hobby and develop one
short module on it for your kids,
friends, or significant other. Let
them tell you what they think,
and go back and revise the
module based on their input
before you develop another
module. Revision is a huge part

18 Courtland Drive
Chelmsford, MA 01824 :

The Right Stuff—One View

What are the major skills that one

can reasonably expect a CAI/CBT
developer to possess? -1 oﬁ‘er the
following list: :

« The ahility to pelform atask
analysis to determine what needs to
be taught.: {8

v The ability to interact with
subject-matter-experts to extract the
technical details of the mstmctmnal
content.

- v The ability to design attractive
and informative computer displays to
present the instructional material.

- The ability to tie those displays -

“together into an instructive,
consistent, and comprehensive whole
~~that is, to ereate a storyboard that

serves as the biuepnnt for the en-hne '

course:
' The ability to translate that
blueprmt intoa wnrkmg cemputer :

. program. :

« The ability to design tests that
measure students’ comprehensxan of-
the material.

v The ability to evaluate the

- effectiveness of the program as a
- teaching tool. ‘

These are the major skills, but we
need to go a bit further: What talents

~make a CBT developer good?

v Strong knowledge of what the
computer can do.

v The ability to work as'an
effective member of a team of

-developers and programmiers,

¢ A highly creative flair for
presenting instruetional material
using the computer medium.

 Asolid gestalt encompassing
the specific'goals of a particular
teaching program and the peneral
facets of learning by computer.

N
~

Authorware Magazine / THIRD QUARTER 1989





