INCREASING CBT DEVELOPER PRODUCTIVITY
WITH AN INSTRUCTIONAL DATABASE !

Jesse M. Heines, Ed.D.

Asst. Prof. of Computer Science
University of Lowell
Dept. of Computer Science
One University Avenue
Lowell, MA 01854

Larry Israelite, Ph.D.

Director, Training Products
Scientific Systems, Inc.
One Alewife Place
35 CambridgePark Drive
Cambridge, MA 02140

Abstract

Computer-based training (CBT) course develcg)er productivity is most often
expressed as the number of development hours needed to produce one hour of on-line
instruction. CBT authoring systems offer a number of approaches to increasing developer
productivity, generally by providing built-in features for typical instructional sequences. As
one would expect, each approach has its benefits and shortcomings. We have adopted an
“instructional database” approach, which attempts to provide simplicity for the course
developer without sacrificing true programming power. In addition, this approach is
designed to take advantage of the desirable built-in features of the authoring language
while maintaining the extensibility needed to implement new instructional designs.

' This paper was the recipient of the Best Paper Award at the 28th International Conference of the
Assoclation for the Development of Computer-based Instructional Systems (ADCIS) in November 1986.



Increasing CBT Developer Productivity with an Instructional Database
Heines and Israelite

Measuring CBT Developer Productivity

The major purpose of computer-based training (CBT) authoring systems is to
increase CBT developer productivity. One standard measure of this productivity is the
number of development hours needed to produce one hour of on-line instruction.
Measures quoted in the literature typically fall between S0 and 150 hours of development
for each hour of on-line instruction, but can range to as many as 300 hours for complex
equipment simulations.

It is often difficult to reconcile these measures with claims made by authoring system
vendors, who typically dramatically underestimate the time taken to produce highly
creative, finished instructional products. When you hear claims that a certain authoring
system allows developers to produce 50 screens per day, you can be assured that that
includes neither ade%lfllate design or testing time nor the realities of the production
environment, i.e., insufficient access to subject matter experts, equipment down time, etc.
It is our experience that even the best CBT developers can produce only one or two
instructional sequences per day, where a sequence is defined as a series of 6-10 related
displays, each requiring a non-trivial response (i.e., requires answer analysis) and each
evolving from the previous display without a full screen erase.

Productivity and Authoring Systems

Regardless of what you include when you tally up your development hours, the key to
increasing developer productivity is to reduce the number of hours needed to produce each
hour of on-line instruction. The most common means used in pursuit of this end is the
adoption of a CBT authoring system. Such systems help enhance productivity in a number
of ways. The list that follows highlights the most typical approaches. We have included
comments on the benefits and shortcomings of each.

1. A language-less system for specifying typical screen displays and their appropriate
presentation sequence.

The main shortcoming of this approach is that it addresses only the most visible
aspect of CBT: what students see on their screens. It severely limits the developer’s
ability to address the more significant aspect of on-line instruction: the implementation of
meaningful student/ computer interactions.

Some systems that employ this approach contain very nice graphics editors with
special routines for screen wipes, animation, etc. In general, however, we have only
found these systems to be useful in creating the most elementary of instructional
sequences, e.g., those that demonstrate a process by displaying a linear sequence of
“slides” and asking the student to press RETURN to go from one to the next.

Language-less systems are typically tightly “bounded,” i.e., they do not allow
programming outside of the features they supply themselves. As such, we have found
these systems too restrictive for all but the simplest of interactions. Most of these
systems are geared toward beginning developers, but some are now appearing with
enhanced functionality for more sophisticated applications.



Increasing CBT Developer Productivity with an Instructional Database
Heines and Israelite

2. A simplified language for specifying typical instructional sequences.

Simplified language systems were devised to reduce the programming skill needed
to produce CBT courseware. Such languages typically lack one or more of the basic
components of a computer language, e.g., the ability to declare variables, to create
looping and if/then structures, or to segment a program via subroutines. Like language-
less systems, these systems can be useful for beginners, but we have found that developers
quickly grow out of them as they gain experience. Rather than trying to make developers
into programmers, we recommend that organizations employ a team approach to
courseware development, with experienced programmers assigned to support
instructional and subject matter experts who are designing CBT materials (Heines, 1985;
Heines & Moreau, 1980).

The benefit of simplified language systems is that most of them employ a very
clean and easy-to-learn syntax for typical CBT constructs such as multiple choice
questions. Their shortcoming, however, is that (like language-less systems) they are
usually tightly bounded and severely restrict creative extensions. In other words, they
make the simple trivial and the difficult impossible. We have found that it is usually easy
to write our own templates or subroutines in sophisticated authoring systems to
implement typical CBT constructs, thus gaining the main benefit of using a simplified
language system without begin limited by its non-extensibility.

3. A et of program templates for implementing typical instructional sequences.

A template is a program shell that is fully operational but lacks subject matter
content. Templates are typically devised for authoring systems that do not have
subroutine capabilities. They allow developers to implement their designs within the
constraints of a predefined instructional sequence, simplifying the dprogramrning task.

The principal advantage of using templates over simplified languages 1s exten-
sibility. If a developer requires a new type of instructional sequence, a programmer can
usually implement a template to achieve the desired effect within a matter of hours.
Course developers then need only insert their subject matter content into the the
program code in the appropriate places to use the template in their courseware. Once a
template is developed, it can be used any time an instructional design calls for its
approach by plugging in the appropriate subject matter.

The principal disadvantages of templates are that they foster large programs by
requiring code to be repeated each time it is needed and, consequently, make revision of
such programs difficult because a change to a template requires changes in each section
of code in which that template is used.

4. A set of utility programs and subroutines for implementing typical features.

Alfred Bork and his colleagues at the University of California at Irvine write most
of their CBT materials in Pascal. Bork has stated that they use Pascal “not because it’s
a good CBT authoring language, but simply because it’s a good language” (Bork,
1981). If you look at Bork’s code, however, you will see that it consists mostly of calls
to subroutines that implement screen management, testing strategies, and many of his
standard instructional sequences. Bork and his colleagues have built up a sizable
library of utility programs and subroutines that they use as building blocks when
creating their courseware.



'Increasing CBT Developer Productivity with an Instructional Database
Heines and Israelite

This agproach is, in fact, typical practice for virtually all experienced software
engineers. One seldom writes a program completely from scratch, and most software
specialists draw on a Ip()sersonal as well as public library of common routines to use as
program building blocks. This approach provides both the simplicity and extensibility of
program templates, but usually results in a smaller final program than the template
approach. (The template approach requires a complete copy in each instructional
sequence that uses it, while only one copy of a subroutine is needed regardless of the
number of times it is used.)

The shortcoming of this approach is that most CBT authoring languages don’t
provide full subroutining capabilities with parameter passing and local variables. One
therefore has to move to a general purpose language like Pascal and re-invent all of the
features inherent in even simplified CBT authoring languages, such as response analysis,
student record keeping, etc. More sophisticated features, such as author-defined variable
pitch character sets, may even require the writing of assembly language routines, a
tedious task even for experienced programmers. In addition, even relative simple code
modifications can require the help of experienced programmers. Thus you might gain the
benefit of good software engineering but lose the benefit of the efforts that have gone
into developing the useful features inherent in CBT authoring systems.

The major trade-offs one must consider in choosing an authoring system are therefore
simplicity vs]:ﬁfpower and built-in features vs. extensibility. The next section describes a
somewhat different approach with which we have been experimenting, the construction of
an “instructional database.” This approach attempts to minimize trade-offs and attempts
to provide the best features of each of the four approaches described above.

An Instructional Database Approach

Scientific Systems, Inc., (SSI) is often asked to develop courseware employing
standardized instructional sequences. One of the most common of these sequences is one
in which students are asked to name the parts of a complex machine, locate them in a
diagram or photograph, and state their functions. SSI has developed a standard approach
E?C“part definition” task and has implemented its approach on both TICCIT and the IBM

In the past, SSI course developers have researched the subject matter, specified the
names, locations, and functions of the machine parts to be taught, and provided this
information to programmers for course implementation. Since the developers write their
specifications on-line, SSI wished to devise a method for automating the specification-to-
program step and eliminate redundant data entry and programming. Our solution was to
design an instructional database. Using this approach, developers enter their course
specifications in a simple format using any standard word processor. Their raw
specification files are then read by a program that converts them into a form which can be
read directly by a running CBT program. The program that reads the raw specification
files functions as a “front-end” to the CBT f)rogram, allowing the CBT program to access
any part definition record in the instructional database with a surprisingly small subroutine.

The beauty of the instructional database approach is that it provides both simplicity
and power. Course developers see the simplicity of the system by working with it at the

-4-



Increasing CBT Developer Productivity with an Instructional Database
Heines and Israelite

database creation level, which can be accomplished with any standard text editor. They can
use the front-end program to check their raw specification files for syntax errors and see
how their displays will look when processed by the CBT program. If they are not satisfied
with the results, they can make corrections and/or alterations in their original files by re-
editing their files with the text editor of their choice.

Programmers see the power of the system by working with it at the database reading
level, after it has been preprocessed by the front-end program. The information in the
database can be used in a large number of ways. For example, the same information can
be used to generate:

- linear slide show-like sequences for introductions and reviews,
- help sequences that explain the location and function of a named machine part,

- practice exercises that require students to indicate the location of a part given its
name or function,

« practice exercises that require students to supply the name of a part given its
ocation or function, and

- test items that match stated functions with part names and/or locations.

The instructional database approach also provides a wealth of built-in features with
complete extensibility. The front-end program is written in Pascal, and we have
implemented versions that run under both VMS on VAX systems and DOS on IBM PCs.
The database reading program is written in TenCORE, a powerful PLATO-like authoring
system for the IBM PC available from Computer Teaching Corporation in Urbana, Illinois.

e can therefore take advantage of all of the authoring system’s built-in features because
the courseware is ultimately presented using by that system. In addition, we can add our
own features (like automatic text centering and generation of lists of bullets) by modifying
the front-end. We can also create new instructional sequences by writing new subroutines
to use the information in the instructional database in novel ways.

Productivity and the Instructional Database

The instructional database approach has completely eliminated the need for
specifications written by course developers to be retyped by programmers. Once the
specifications are run through the front-end program, at least one aspect of the course is
completely ready for presentation without further programming. Our programmers thus
concentrate on providing a library of standard routines rather than implementing each
instructional sequence designed by the developers. When developers do specify a new
design, that routine becomes part of the library and can be used for any subject matter.

Thus we believe that we have achieved the benefits of both worlds by employing an
approach that is easy for non-programmers to use but does not inhibit their creativity. At
the same time, the approach is very efficient from a programming point of view and readily
extensible to accommodate new designs. We are now working on building our library of

5.



Increasing CBT Developer Productivity with an Instructional Database
Heines and Israelite

standard routines and assessing the full impact of this approach on the number of hours
needed to produce each hour of on-line instruction. If the results of these efforts are as
positive as we anticipate, we hope to achieve very significant increases in CBT developer
productivity for a wide range of instructional applications.

References Cited
Bork, Alfred, 1981. Learning With Computers. Digital Press.

Heines, Jesse M., 1985. Anybody Can’t Do CBT. Training News 6(7):9.

Heines, Jesse M., and Ken Moreau, 1980. The Three-Pronged Computer-Based Course
Development Process. ADCIS Proceedings, Washington, D.C.



