Ly}

Volame DG, Number 1

September 1987

SEPTEMBER 1987 9

Rule-based programming
may -sound complicated,
but it's really just a
matter of matching
adtions to conditions.

Jesse M. Heines

I|consider myself basically a CBT im-
plementor, as opposed to a CBT theorist.
Theories and concepts are of course neces-
sary, but I find theoretical discussions with-
out/complementary implementations hol-
low, and often downright boring. On the
other hand, courses implemented without
unifying theories and concepts are at best
disjointed and at worst chaotic. My last
column (“On Creativity in Programming,”
July, 1987) presented the concept of creat-
ingja menu data structure and using an al-
gorjthmic implementation to display the
menu and receive the user’s selection. That
column also showed how this concept
could be implemented in a standard CBT
authoring language. This month, 1 want to
begin looking at the concept of rule-based
programming, one of the more basic forms
of what is commonly called “artificial intel-
ligence.” Rule-based programming is more
complex than the programming discussed

e M. Heines is an assistant professor
of computer science at the University of
Il in Lowell, Massachuselts. He is
the author of Screen Design Strategies
for|Comptuer-Assisted Instruction as
well as numerous articles on course-
ware development. Dr. Heines provides
training and consultation on computer-
based training, develops custom training
pragrams on contract, and writes “The
CBT Craftsman’ every other month.

THE CBT CRAFTSMAN

Copyright (c) 1987
Weingarten Publications, Inc.
Reprinted with perm/ssmn

in my last column, so | will present the con-
cepts this month and leave implementation
for my November column.

(Note: | detest the terms “artificial intel-
ligence” and “intelligent CBT” because they
have a number of nasty connotations—if
my CBT isn't intelligent is it stupid?—and
because they have been applied to so many
unrelated applications that they are now
virtually meaningless buzzwords. Rule-
based programming is a distinct technique
which 1 hope lo clucidate in this and future
columns, and [will therefore use this term
exclusively.)

The basic principle in rule-based
programming is to express program control
structures in the form of rules, statements
that specify actions to be taken if certain
conditions are true. The complete set of
rules may be thought of as a program con-
trol data base, often called a rule-base,
which is stored in variables and processed
algorithmically.

A program that processes a rule-base to
extract its inferences is often called an in-
ference engine. Part of the problem in de-
veloping practical rule-based systems is to
construct the rule-base so that its rules can
be scanned quickly by an efficient infer-
ence engine, especially when a large num-
ber of rules is involved. Otherwise, a rule-
based system can easily become *“com-
binatorially infeasible.” Although it may be
fine in theory, the amount of processing
needed to extract inferences from its rule-
base (due to the large number of rule com-
binations) makes implementation of the
system infeasible.

Researchers in rule-based programming
have devised a number of forms for ex-
pressing and processing rules efficiently for
different types of applications. One of the
simplest and most common forms is the i+
then form, in which the left-hand side (LHS)
of the rule expresses a number of condi-
tions and the right-hand side (RHS) of the
rule expresses an action to be executed if
all of the conditions on the LHS are true.

Suppose, for example, that we wish to
program a scoring algorithm for a short
quiz in which students with scores of 85 or
above are classified as masters, those with
scores of 60 or below are classified as non-
masters, and those with scores of 61 to 84
are presented with a longer, more compre-

The Desngn Of A
Rule-Based Router

IF (SCORE > =85) THEN CLASSIFY__STUDENT__AS__A_ MASTER ;
IF (SCORE > =61) AND (SCORE < =84) THEN PRESENT__LONGER__TEST °
IF (SCORE < =80) THEN CLASSIFY__STUDENT__AS__A__NON-MASTER -

Figure 1. One of the simplest and most common types of rule-based programming uses the

“if-then” form, in which the left-hand side of the rule expresses a number of conditions and the

right-hand side expresses an action to be executed if all the conditions are true.

hensive test. In common programming
syntax, such rules might look like Figure 1.

Writing and processing a series of if-then
staternents in this form can be burden-
some, particularly in the case where more
than one LHS might be true. When all of
the left-hand sides can be dealt with in
terms of a relatively small set of variables,
itis usually easier to express the rules in a
tabular form, like Figure 2.

Minimum -~Maximume-- Student---+
Score

Score

Classification

Notes mm&slhaflllewhlemlimpostm
irrelevant
"écmylamlhmmmwm
demonslrated mastery) :
“Cbsyhcahon?mdmﬂulnnmasuy
. decision can be made .
'r'ClaSSIIlcatmnSmmleslhaIMStudeas
demonsirated non-mastery

Figure 2. When all of the left-hand sides
can be dealt with in terms of a relatively
small set of variables, it is usually easier to
express the rules in tabular form.

Since this structure is made up com-
pletely of numbers, it is easy to implement
as a two-dimensional array. The first two
elements in each row form the rule’s LHS,
while the last element forms its RHS. Such
a structure can be quickly and easily
processed to find which rule matches the
student’s current score and what classifica-
tion should be made.

Here's an even more complex example to
show how rules are devised. This example,
developed by Dr. Tim O'Shea of The Open

University in Milton Keynes, England, to il-
lustrate rule-based programming in an in-
structional setting, is excellent for this type
of discussion because it is “bite-sized” and
well-documented.

Consider an instructional program in
which the terminal objective is to learn a
skill referred to as Skill 3. Skill 3 has two
sub-skills, Skill 1 and Skill 2, of which Skill
1 is the more basic. Most students should
be able to master Skill 2 without going
through formal instruction on Skill 1, but
we want instruction on Skill 1 to be availa-
ble for those students who need it. We
therefore develop three instructional mod-
ules, one for each of the three skills. In ad-
dition, we develop three tests to assess stu-
dent mastery of the skills taught in each of
the three modules. The problem is now to
decide the order in which these modules
should be presented to the student, or how
the student should be routed through the
instructional program to best take advan-
tage of the inherent module prerequisites
and the student’s ability to master the skills.

The overall plan begins with presenta-
tion of Module 2 and then a test on its con-
cepts. Based on the results of this test, the
student will be asked to do the same mod-
ule again or be routed to another module.
This module-test-route loop continues un-
til either a maximum of five modules have
been presented or the student demon-
strates mastery on Skill 3.

We are now ready to begin developing
the rule-base for our router. The routing
rules will be based on five parameters: the
student’s mastery status on each of the
three skills (with 1 indicating mastery, and
0, non-mastery), the number of the module
that the student completed last, and the to-
tal number of modules that have been com-
pleted. These five parameters form what
O’Shea calls a state vector, an ordered set
ol numbers that correspond to the student's

THE CBT CRAFTSMAN

status on each parameter. For example, a
state vector of:

o 1 0 2 1

indicates that the student has demonstrated
mastery on Skill 2 but not Skill 1 or Skill 3,
that the last module completed was Mod-
ule 2, and that the total number of modules
compleled is 1. The state vector defines the
format for the rules’ left-hand sides. The
rules’ right-hand sides are simply the num-
ber of the module to be studied next, with

ule 1, we repeat Module 3. Otherwise, we
route the student to Module 1. This scheme
may be concisely expressed with two rules:

3t = 3 - 3
4 0 * * 3 * 1

Rules 2, 3, and 4 take care of all the situ-
ations in which Module 3 has just been
presented. We now turn to Module 2. if stu-
dents demonstrate mastery on the Module
2 test, we route them to Module 3. If not, we
once again look at their status on Module

Rule RIGHT-HAND
Number LEFFHAND SIDE SIDE
Skill Skill Skill Last No.of - . Next
| 2 Module Mgdules Module
1. - . . -5 0

Note: * indicates thal the valve in this position fs iefevant

Figure 3. An instructional program’s “module-test-route” loop should terminate under two
conditions. The first, expressed here in rule form, occurs when a maximum of.five modules
have been presented, regardless of the student's mastery stales.

0 indicating that the instructional program
should stop.

To sitnplify things, let us put two small
constraints on how our rule-base will be
processed. Firsl, each rule will be processed
sequentially until a rule is found whose
LHS matches the state vector. Second,
when a matching rule is found, processing
of the rules will cease. This constraint
eliminates the problem of what to do if the
state vector could match the left-hand sides
of two or more rules.

The first rules we want to write are those
that tell the router when the instructional
program shoulid stop. | stated in my descrip-
tion of the overall instructional plan that the
module-test-route loop should terminate
under two conditions. The first condition
occurs when a maximum of five modules
have been presented, regardless of the stu-
dent’s mastery states. This conditioncanbe
expressedinruleformasshownin Figure3.

The second terminating condition occurs
when thestudent hasdemonstrated mastery
on Skill 3. In the format shown above, this
condition can be expressed in rule form as:

A

We now consider what we want to hap-
pen after the student has completed each
module, beginning with Module 3. If Mod-
ule 3 has just been presented and the stu-
dent has demonstrated mastery on the cor-
responding test, Rule 2 will match the state
vector and the program will stop. Students
who did not demonstrate mastery on the
Module 3 test may lack some of the prereq-
uisites for this module. We know that a stu-
dent must have demonstrated maslery on
Module 2 to get to Module 3, so we only
need to look at the Module 1 status. If the
student has demonstrated mastery on Mod-

1. If they have demonstrated mastery there,
we repeat Module 2. Otherwise, we route
them 1o Module 1. This scheme may be
concisely expressed with three rules:

5 * 1 * 2 " 3
6 1
7.0 * 2 A1

Module 1 presents the most basic infor-
mation, so if students have just completed
it and demonstrated mastery on the test, we
want them to go onto Module 2. Otherwise,
they should simply repeat Module 1:

Finally, we need a catch-all rule that traps
situations in which none of the rules’ left-
hand sides matches the state vector. This
case occurs before the student starts the
program, when the state vector is initialized
to all zeros. In this case, we want the stu-
dent to start with Module 2. We therefore
write the final rule this way.

10. - » - - - 2

We now have a complete set of rules, one
of whose LHS matches each possible value
of the stale vector. The state vector will be
updated by the CBT program each time a
student goes through the module-test-route
loop.

The next problem is to write a routine
that compares the state vector to each of the
rules’ left-hand sides in turn until a match
is found and then returns the value of that
rule’s right-hand side, which is the number
of the module that should be presented
next. And this problem will be the subject
of my next column.

