VYoluny

Vil, Number 1}

NMirainingINews

July 1987

THE CBT CRAFTSMAN

Copyright 1987

Weingarten Publications, Inc.

Reprinted with permission.

On Creativity In
Programming

Scratch an excellent
course and underneath
you will find a beautiful
design, not to mention
an elegant body of
program code.

¥

Jesse Heines

My editors and | had considerable trouble
coming up with a title for my May 1987
column on Paul Russell. The title that we
used, "On CBT and Creativity,” came out
of a number of suggestions, including my
own. When [read the title and article in
their final form, however, | felt that we may
have used the terin “creativity” too restric-
tively. That column focused on creative de-
sign. This month I'd like to focus on crea-
tive programming.

| have often stated that you can't make
a good picture from a poor negative, ie.,
you can't implement a good course from
a poor design. Yet even with a good nega-
tive, the resultant picture can be disap-
pointing. Interestingly enough, the pho-
tographer who originally snapped the
shutter may not be the best technician to
make the print in the darkroom. To use an-
other analogy, this time from the world of

music, a work’s composer may not be its
best performer or conductor. Consider this
excerpt from the program notes about
Tehaikovsky’s Fifth Symphony from a re-
cent concert by the Atlanta Symphony:

“At the first two performances in St.
Petersburg in November 1888, audiences
applauded but the critics found the work
disappointing, calling it an unworthy suc-
cessor to the Fourth Symphony. His
brother, Modest Tchaikovsky, felt that the
reason was Tchaikovsky's poor showing as
a conductor. Early in his career, Tchai-
kovsky had been terrified of the podium,
having to hold on to his beard while con-
ducting, he said, to keep his head fromn fly-
ing off. Later, after he heard the work wel)
played and well received in Hamburg, he
was able to wrile to his nephew Vladimir
Davidov, ‘The Fifth Symphony was mag-
nificently played, and I like it far better
now, having had a bad opinion of it for
some time!

The programming of a CBT course is to
its design as the performance of a musical
score is to its composition. Code can be
hacked together or it can be implemented
with elegance. The former seldom achieves
the full range of interactions planned by
the designer and is always difficult to up-
date. The latter is a close reflection of the

RESTAURANT MEHU

Burger King
Courthouse

PENRALON -
¥

Enter tha number of the restaurant you would iike
information on.

Your chojce: b3

Jesse M. Heines is an assistant profes-
sor of computer science at the Univer-
sity of Lowell in Lowell, Mas-
sachusetts. He is the author of Screen
Design Strategies for Compulter-Assisted
Instruction as well as numerous arti-
cles on courseware development. Dr.
Heines provides training and consulta-
tion on computer-based training, de-
velops custoni training programs on
contract, and writes “The CBT Crafts-
man’ every other month.

Figure 1. A menu of restaurants

Dunkin® Donuts

Dunkin’ Donuts offers a large variety of
fresh donuts 24 hours per day. Coffee
oonnoisseurs also olaim that Dunkin®

Oonuts offers the finest coffee in town.

Press tha NEXT key to return to the menu.

Figure 2.Information displayed for
menwu itern 3.

designer's intentions and allows small
changes to be made without extensive
reprogramming.

Let us consider a common interaction
that occurs in many CBT courses: a student
selects an item from the menu, the com-
puter displays information pertaining to
that item, and the student is then asked to
press the RETURN key to return to the
menu. Figure 1 is an example of a typical
menu for this type of interaction. This ex-
ample is a list of restaurants, and the stu-
dent is asked to type a number to receive
information about the corresponding res-
taurant. Figure 2 shows the information
displayed for the third restaurant on the
menu, “Dunkin’ Donuts”

There are basically two ways to program
this interaction. First, we can "hard-code”
the menu options and their corresponding
information displays. In TenCORE?®, this ap-
proach can be programmed as shown on
the left side of page 8. The code shown
here might seem a little foreign if you are
not all familiar with computer program-
ming, but the discussion below will ena-
ble you to follow the logic of it, whether or
not you understand the commands.

The “hard-coding” in this approach oc-
curs in two places: first at lines 15-26 where
the restaurant names are displayed and
then at lines 51-78 where the correspond-
ing information is displayed. Now consider
what has to be done in this hard-coded ap-
proach if we wish to add a restaurant to the
list. First, we must renumber the menu op-
tions to keep them consecutive both in
lines 18-26 where the list is displayed and
in lines 51-78 where response processing
takes place. Second, we must insert an en-
tire response processing selection of at least
7 new lines to process the new option (see
lines 61-67). This is a considerable amount
of overhead considering that lines 52-56,
62-66, and 70-74 are all almost identical—
the only difference being the string that is
packed into variable censtmg alt lines 54,

- 64, and 72.

A better, more crealive way to program |
this interaction is shown next to the other
example.

This approach is considerably different.
Instead of “hard-coding” the restaurant
names and their corresponding informa-
tion, we set up a small database. First we
define some local variables in lines 4-10.
The database itself consists of two sub-

THE CBT CRAFTSMAN

scripted variables, or arrays, optitles and
opdescs (I would indeed prefer to have
used longer, more descriptive variable
names, but TenCORE* restricts variable
names to eight or fewer characters). These
arrays store the option titles (restaurant
names) and option descriptions (their cor-
responding information) in 20-byte and
256-byte strings, respectively.

Program lines 13-39 store the restaurant

others by a semicolon, Note that no renum-

bering is necessary, because the options
are numbered “on the fly” by the loop at
lines 50-53. Finally, we add the restaurant
information to the list at lines 29-38 in a
position that corresponds to where we add
the restaurant name. That is, if we made
the new restaurant the third name in the

list, its corresponding information would -

have to be placed third in the information

In summary, one should see that the
extra effort needed to write a creative,
algorithmic program will pay
dividends as the program grows both
in size and complexity.

data in the database variables. The loop
that begins at line 17 and ends at line 39
is executed once for each restaurant in the
database. The two packe statements at
lines 18 and 28 have a somewhat opaque
syntax, but they basically store the infor-
mation for one restaurant in the eorrect ar-
ray elements on cach pass through the
loop. Note that each piece of dala is sepa-
rated from the next simply by a semicoton.
This will be important later in the
discussion.

Once the data is stored, it can be dis-
played algorithmically rather than in a
hard-coded manner. For example, look at
how the menu options are displayed using
aloop at lines 50-33. Line 51 says “display
the value of the loop index, &, as a num-
ber, follow this with a period and two
spaces, and then display the indexed op-
tion title as an alphanumeric string”” There
is no reference to a specific, hard-coded
string here. This loop will work no matter
what the option strings contain. And the
loop itself will be executed as many times
as necessary, controlled by the value of the
constant noptions on line 50.

Likewise, response handling is per-
formed algorithmically rather than in a
hard-coded manner. First, the student’s re-
sponse is stored as a number in variable
optionum at line 72. This number is then
used in the Boolean expression at line 76
to determine whether the student’s re-
sponse is in the range of | 1o the number
of options, inclusive. If it is, the code at
lines 76-82 handles all valid options. Line
79 packs the correct option title into vari-
able censtrng for subsequent centering at
the top of the screen. And line 82 displays
the correct option description stored in ar-
ray opdescs.

Now consider what has to be done in
this algorithmic approach if we wish to add
a restaurant to the list. First, we must in-
crease the constant at line 5 that stores the
number of options. Second, we add the
new restaurant name to the list at lines
19-27, separating the new name from the

list. Again, note that we only need to sep-
arate the new information from the others

by a semicolon and that no renumbering

is necessary. (The numbers that appear af-
ter the double dollar signs on lines 29, 33,
and 35 are commients for clarity.) This up-

date procedure is clearly much casier than |

that required for the hard-coded approach.
In addition, only the new incnu data is be-

ing added; no overhead is required. The -

loop at lines 50-53 does not need modifi-
cation, and neither does the response proc-

essing code at lines 76-82. As the menu -
grows, therefore, this approach will clearly -

result in much less code than a hard-coded
approach. In addition, this same algorithm
can be used for other menus simply by
changing the dala in the arrays.

In summary, one should see that the ex-
tra effort needed to write a creative, al-
£rilhmic program will pay dividends as
the program grows both in size and com-
plexity. A single algorithm can often be
written to handle a large variety of similar
situations, thus reducing overall size. In ad-
dition, creative, generalized algorithms ac-
tually reduce progranmi complexity by cen-
tralizing functionality. Why have to debug

a separate subroutine for each menu when -

you can have one generalized menu han-
dler for the entire course? The generalized
menu handler will undoubtedly be better
tested, offer more functionality, and pro-

vide superior human factors to any series

of repelitive menu subroutines. Program-
mers, like musicians, should use the full
range of their creative skills to implement
course authors’ compositions.

TenCORE is a registered trademark of
Computer Teaching Corporation. In this
language, each command line begins
with a command word, which tells the
system what to do. The command word
is followed by a command argument,
which tells the system the parameters
needed for that command. The lines are
numbered only for reference. TenCORE
does not require line numbering.

B TRAINING NEWS
1~ '1 . €
. Thi ce s se.
2 * This unit displays a list of restaurants, allows the user § - This unit implements the restaurant mend as & databa
3 * to setect one, and displays data on that restaurant. 4 define local $$ begin locat variabte definitions
b R S noptions = 9 $$ number of menu options (a constant)
5 screen cga $$ set screen to medium resolution color 6 k.2 $$ loop index (a 2-byte integer)
6 spacing variable $$ use variable pitch when displaying text 7 o;':tionun,z $$ option number chosen by user (a 2-byte integer)
. : 8 optitles(noptions),20 $$ option titles (an array of 20-byte strings)
8 * show the menu title 9 opdescs(noptions),256 $$ option descriptions (an array of 256-byte strings)
9" . : 10 define end $$ end local variable definitions
10 zero censtrng $$ clear global string variable censtrng 1"
11 pagk censtrng, RESTAURANT MENU $$ pack "RESTAURANT MENU" into censtrng 12 screen cga $$ set screen to medium resolution color
12 do center(160,180) $$ center string in censtrng around 13 spacing variable $$ use variable pitch when displaying text
13 $$ column 160 on line 180 (pixels) 1% *
14 . . 15 * Set up the database
15 * Display the menu options 16 *
16 * 17 toop k & 1,noptions $$ loop for the number of options
17 at 120,165 i 18 . packc k; optitles(k);; ; ; $$ store option titles in array .
18 write 1. Burger King 19 . Burger King;
19 2. Courthouse 20 . The Courthouse;
20 3. Dunkin' Donuts 21 . punkin' Donuts;
21 4. Friendly's 22 . Friendly's;
22 5. Hong &AKong 23 . Hong & Kong;
'23 6. Mai Kai 24 . Mai Kai;
24 7. Manning Manse 25 . Manning Manse;
25 8. McDonald's 26 . McDonald's;
26 9. skip's 27 . skip's;
27 - : 28 . packc k; opdescs(k);; ; ; $$ store option descriptions in array
28 * Prompt for user input 29 . Burger King offers flame-broiled "whopper™ $$ 1
29 . - R 30 . hamburgers and a nice salad bar in a fast-
30 at 50,2y-25 ° $$ position cursor to x = 50 pixels and 31 food environment. You may eat in or take
31 $s y = 25 pixels below the current y 32 N out.:
32 write Enter the number of the restaurant you would like 33 The Courthouse offers pub-style lunches $$ 2
33 information on. 34 . and dinners in a club environment.;
B4 . 35 . punkin® Donuts offers a large variety of $$3
35 Your choice: $%% 36 . fresh donuts 24 hours per day. Coffee
B - : 37 . connoisseurs also claim that Dunkin®
gg : Get user input 38 . Donuts offers the finest coffee in town.;
39 blanks ($$ allow a NEXT key press by itself ... and so on for the other six restaurants
40 arrow $$ pause for student input
%1 holdok $$ don't print the standard system '"ok" message 39 endloop
2 erase zx,zy+10; 319,0 $$ erase the error message functional area 40 *
3 * * i
b4 * Provide feedback :; * Show the menu title
%5 *
46 answer $$ respond to a NEXT key press by “ ;::: 2:::::2: ,RESTAURANT MENU
k7 . write Enter a number before $$ itself 45 do center(160, 180)
L8 . pressing NEXT. o i 46 *
49 . judge ignore $$ ignore student entry and return to .0 :
50 $$ the arrow (line 40) for another 2; - Display the menu options
51 answer 1 $$ respond to an answer of U1 49 at 120,165
p2 . erase $$ erase entire screen 50 toop Kk 5'1’ noptions
B3 . zero censtrng) 51 . write «s,k». «a,optitles(k)»
b4 . pack censtrng, ,Burger King 52 . at 120, zy~ 10
5S . do center(160, 180) 3 53 endloop
56 . at 65,160 $$ display information message 54 *
57 . write Burger Xing offers flame-broiled “Whopper" - <
58 . hamburgers and a nice salad bar in a fast- ;Z - Prompt for user input
59 . food environment. You may eat in or take 57 at 50,2y-15
£0 . out. . 58 write Enter the number of the restaurant you would Llike
61 answer 2 ’ $$ respond to an answer of 2" 59 information on.
62 . erase 40
63 . zero censtrng 61 Your choice: $%%
64 . pack censtrng, ,Courthouse 62 %"
65 . do center(160,180) / 63 * Get user input
66 . at 65,160 6 *
&7 . write The Courthouse offers pub-style lunches 65 blanks $$ allow a NEXT key press by itself
68 . and dinners in a club environment, &6 arrouw $$ pause for student input
69 answer 3 $$ respond to an answer of "3" 67 holdok $$ don't print the standard system "ok" message '
70 . erase 68 erase 2X,zy+10; 319,0 $$ erase the error message functional area
71 . zero censtrng 69 *
72 . pack censtrng, ,Dunkin' Donuts 70 ¥ Provide feedback
73 . do center(160,180) 7> :
% . at 65,160 72 store optiomm $$ store entry in a variable
75 . write Dunkin' Donuts offers a large variety of . write Enter a number and $$ respond to a "null® entry
76 . fresh donuts 24 hours per day. Coffee 76 . then press NEXT.
77 . connoisseurs also claim that Dunkin' 75 . judge ignore
78 .. Donuts offers the finest coffee in town. 76 ok optionun 2 1 and optionun £ noptions $$ respond.to all valid
. v . erase $$ option number entries
.. and so on for the other six restaurants 7, 7 zero censtrng
. - ck enstrng, ,«a,optities(optionum)»
9 no ' $$ respond to an "incorrect" 80 . 53 ﬁenter??é('),ﬁg'; (op
0 . write Please enter a number $$ entry Bl . at 65,160
1. between 1 and 9. 82 . showa opdescg(optionum)
2 . judge ignore 83 no $$ respond to an "incorrect"
3 endarrow $$ end response processing 8 . Write Please enter a number $$ entry
hod 85 . between 1 and 9.
S * Get NEXT key to repeat menu 86 . judge ignore
5 * 87 endarrow 3 end response processing
7 zero censtrng 88 v
pack censtrng, ,Press the NEXT key to return to the menu. 89 * Get NEXT key to repeat menu
9 do center(160,30) 90 *
90 next «zunitr» $$ execute the current unit again after the 91 zero censtrng
91 $$ student presses NEXT 92 pack censtrng, ,Press the NEXT key to return to the menu.
93 do center(160,30)
94 next «zunit» 3 execute the current unit again after the
95 $$ student presses NEXT
Here are two ways to program a common CBT interaction in which a sludent selecls an item from a menu, the compuler displays relevant information, and the student is then asked to press Lhe
RETURN key lo return to the menu. On the left, the menu oplions and Lheir corresponding information displays are hardcoded. On the right, lhey are stored in a dala base and displayed algorithmically.

