Volume VI, Nomber 7

ilira

March 1987

THE CBT CRAFTSMAN

Copyright 1987

Weingarten Publications, Inc.
Reprinted with permission.

Along with everything
else, CBT developers
worry about their
productivity ratios.
One antidote to that
worry may be the use
of symbolic authoring
systems.

Jesse M. Heines

A few weeks ago | received a call from a
course developer in SL. Louis. She had just

. finished reading my November 1986 col-

umn (“Front End Drive”) on the use of au-
thoring system front-ends to increase
course development productivity. She told
me that she and a colleague had been us-
ing Pascal for CBT development, and that
it had taken the two of them a full year to
produce one eight-hour course. “Manage-
ment here thinks that’s too much time,” she
said, and she told me that she was desper-
ately looking for a tool that would help in-
crease her productivity as a developer.

[replied that two man-years was a bit

Jesse M. Heines is an assistant professor
of computer science at the University of
Lowell in Lowell, Massachuselts. He is
the author of Screen Design Strategies
for Computer-Assisted Instruction as
well as numerous articles on course-
ware development. Dr. Heines provides
training and consultation on computer-
based training, develops custoin training
programs on contract, and wriles “The
CBT Craftsman’ every other month.

high for an eight-hour course, but onfS/ by
a factor of about two. A man-year is about
1920 hours—48 weeks (52 weeks minus
two weeks of vacation minus 10 holidays)
times 40 hours per week—so 2 man-years
is aboul 3840 hours. Dividing 3840 by 8
yields 480 development hours per hour of
instruction.

That number is not surprising at all, par-
ticularly for first-time developers working
with a general purpose language without
the special routines provided by special-
ized authoring languages. Including all the
time spent on planning, subject matter re-
search, and instructional and graphic de-
sign, experienced CBT developers typically
require between 100 and 250 development
hours per hour of instruction, depending
upon the complexity of student-computer
interactions.

We developers can argue all we want to
about instructional quality, but the bottom
line will always cause management to try
to increase our productivity. Before we try
to see how this might be done, let us es-
tablish the following postulates.

1. There is no substitute for time spent
on design.

2. Authoring languages and systems gen-
erally address the programming aspect
of CBT development, not the design.

3. The production of quality CBT re-
quires materials to be developed,
tested, and revised in an iterative
manner.

Given these concepts, you should see
that no matter how hard you get pushed
lo increase productivity, you shouldn’t
compromise on design time. You can't
make a good picture from a bad negative.
If you cut corners at the design stage, your
boss or client may get the course more
quickly, but when students fail to learn
from it, the onus of their failure will ulti-
mately be directed toward you. While au-
thoring languages and systems will cer-
tainly decrease the amount of time it takes
to program a CBT course, neilher will be
able to tell you how a course should be de-
veloped. 1 personally guarantee that you
will quickly outgrow any authoring systemn
thal allows only a small set of inflexible in-
structional designs.

The key to increasing productivity, then,
is to attack the iterative process of devel-

Authoring
Productivit
Revisited

opment, testing, and revision. Mass man-
ufacturer Henry Ford and economist John
Kenneth Galbraith have shown us that peo-
ple in any system—computerized or not—
can usually achieve greater productivity in-
creases by shaving small bits of time from
processes that are done over and over,
rather than by sawing large chunks of lime
from processes that are only done once.

Working with symbolic authoring sys-
tems allows a course developer to do just
that, because they allow you to get a han-
dle on the entire course structure and to
manipulate layout and sequence easily at
both the lesson and individual interaction
levels, These are the parts of a CBT course
that change the most as new lessons are
added between existing ones, and lessons
or sequences that teach poorly are elimi-
nated or replaced. | used Course of Action
(from Authorware, Inc., in Bloomington,
Minnesota) to illustrate points in my last
column (“Not Just Another Pretty Author-
ing System,” January), so I'll use Maestro
(from AlMtech Corporation in Nashua,
New Hampshire) in this one.

Symbolic authoring systems such as
Maestro and Course of Action have the
potential to affect course developinent pro-
ductivity significantly, but it is diificult to
show this without reviewing them in con-
siderable detail.

Now, it is not my intention to promote
either Maestro or Course of Action com-
mercially, nor is it my intention to rate
them one against the other feature-by-
feature. The most significant differences be-
tween them are direct functions of their
host computers: Maestro runs on the IBM
PC (and other systems) with medium reso-
tution color graphics, while Course of Ac-
tion runs on the Macintosh with high reso-
lution black and white graphics (the Mac
does not support color). Maestro also sup-
ports the videodisc, while Course of Action
does not. (As far as | understand, the Mac-
intosh video board is incapable of being in-
terfaced to videodisc signals.)

A Partial Maestro Walk-Through

Figure 1 shows the author's top level
when Maestro is initially invoked. Maes-
fro requires a software windowing package
from Microsoft Corporation called Microsoft

THE CBT CRAFTSMAN

Windows which, in turn, requires a Micro-
soft mouse. These tools make the Maestro
editing environment virtually identical to
that of the Macintosh. Courses are built by
using the mouse to move icons from the
icon library in the icon library window to
appropriate positions on the course flow-
chart in the course flowchart window.

lgestro Control File €¢I\ Devices Icon Size I
0

652314

B P

h
LAy £
{ |

I

Figure 1. The top level of AIMtech’s Maestro
system as seen by a course author. (Copyright
1986, 1987, AIMtech Corp., reprinted with
permission.)

As a course is built, the course flowchart
expands, as shown in Figure 2. When the
course becomes too large to fit in the course
flowchart window, Maestro allows the size
of the icons to be reduced, or you can just
scroll the course flowchart window.

Now comes the productivily enhance-
ment stage. Let’s say that testing of the
course with sample students reveals that
the material currently presented in the
third section would better be presented sec-
ond, and that the material in the current
second section should be revised to build
on the material currently presented in the
third. That is, we want to switch the order
of presentation of the current second and
third sections and then revise the new third
section.

Figure 2. A Maestro course flowchart for a
sitnple lesson. (Copyright 1986, 1987, AiMiech
Corp, reprinted with permission.)

To switch the current second and third
sections, the author begins by “touching”
the first icon of the second section. (One
“touches” an icon by putting the mouse
pointer on the icon and pressing the mouse
button.} The author then touches the word
EDIT at the top of the course flowchart win-
dow and a menu of editing functions pops
onto the screen (see Figure 3). Next, the au-
thor touches the RANGE ON function, and
then touches the last icon of the second
section. All icons between the first one
touched and the last one touched now
change color, indicating that they have
been “selected.”

The author now touches the CUT func-

ut harizente)
o

Y
Paste Vorticsl P

Figure 3. Menu of editing functions.
(Copyright 1986, 1987, AiMtech Corp,
reprinted with permission.)

tion in the edit menu and the selected
icons disappear into a buffer, or temporary
holding area. Figure 4 shows how the flow-
chart is redrawn to eliminate the icons that
have been cut out. Note, though, that the
integrity of the course structure is automat-
ically maintained.

By using the editing paste function, the
author can reinsert the icons in the buffer
back into the course at the desired position.
The author first selects (by touching with

Figure 4, Tﬁe course flowchart after the
icons for the second section have been cut
out. (Copyright 1986, 1987, AiMtech Corp.,
reprinted with permission.)

the mouse) the icon in the course flowchart
jo which he or she wants the icons in the

‘buffer appended, and then touches the

PASTE function in the edit menu. Once
again, the flowchart is redrawn to reflect
the changes while maintaining the integ-
rity of the course structure (see Figure 5).
Davices

HMeestro Contro} Fils Edit leon Size

Figure 5. The course flowchart after the
icons for the old second section have been
pasted in at the end of the third section.
(Copyright 1986, 1987, AiMtech Corp,
reprinted with permission.)

Revision of the old second section (which
is now the new third section) is carried out
in a similar manner. The author selects the
course component icons he or she wishes
to edit, chooses the appropriate functions
from the editing menu, and performs the

desired changes in an interactive manner.
The author may delete or modily existing
icons or add new icons, and Maestro will
automatically maintain the integrity of the
course structure at all times.

At any point in the revision process the
author may touch the word CONTROL at
the top of the course flowchart window to
display a menu of control functions. One
of these functions allows the author to run
the course as a student to try out his or her
revisions. Thus, the iterative process of de-
velopment, testing, and revision is stream-
lined considerably, and the developer's
productivity enhanced accordingly.

As far as [know, no full courses have yet
been developed with any symbolic author-
ing system, although small demonstration
programs are certainly available for both
Maestro and Course of Action. | have tried
in my last two columns to emphasize the
potential 1 see for these systems to affect
course developer productivity positively,
but I have no empirical data to support this
view.

One of my colleagues (whom | respect
greatly) thinks the constant use of the
mouse will be very tedious in an eight-
hour-per-day production environment, and
perhaps he’s right. Personally, | think that
using the mouse wouldn't be at all tedious,
but I admit the constant shifting from
mouse to keyhoard and back would be-
come tiresome for an experienced typist.
(The people at AlMtech Corporation dem-
onstrated one procedure in which the
mouse interface could be circumvented
and the editing actions read from a control
file—but this was definitely not standard
procedure.)

One fact I'm quite sure of is that the use
of these syslems requires considerable
computer power. There are a number of in-
stances in which I have seen courses | de-
veloped on my own IBM XT run on an IBM
AT, and the overall effect of the increase in
speed is startling. Even though the course
really runs only two or three times faster,
the impression is that the increase in speed
is much greater. The whole “feel” of the
course changes. I'm sure that most de-
velopers who have gone from systems with
floppy drives only to hard disk systems
would revolt if they were asked to give up
the faster access time they now enjoy.

In fact, research at IBM shows that two
easy ways to increase users’ productivily
are to give them faster system response
time and more disk space. Both of the sym-
bolic authoring systems discussed in this
column require windowing and complex
screen management in author mode, and
I'm sure that their performance would be
unacceptable on very small personal com-
puters. Course of Action clearly requires the
Macintosh, while Maestro requires a sys-
tem with enough “heft” to support Micro-
soft Windows.

| invite readers to write to me c/o Train-
ing News to share additional views on in-
creasing course developer productivity.
Readers interested in further information
about Maestro should write to John
Olapurath, chairman and CEQ, AiMtech
Corporation, 77 Northeastern Boulevard,
Nashua, New Hampshire 03062, or call
(603) 883-0220. [

