. September 1966

_ SEPTEMBER 1986 7

THE CBT CRAFTSMA

Copyright (c) 1986

Weingarten Publications, Inc.

Jump Up, Drop Down

]

Course authors, like
scuba divers, can work
at different levels—and
_course authors can even
shuttle back and forth
between “depths.”

Jesse M. Heines

I am not an enemy of authoring
languages, authoring systems, or any tool
that increases CBT author productivity. It's
just that [don’t want my courseware to be
limited by what someone else thinks a
CBT program is supposed to do.

My July column (“Can [Call You?”) dis-
cussed one feature that can be incor-
porated into authoring languages and sys-
tems to remove their limitations: making
them callable. This month’s column dis-
cusses another feature—allowing authors
to work with the authoring system at mul-
tiple levels. Consider, for example, an
authoring system that offers two levels, or
“shells” (borrowing the term used by Unix
for a specific interactive user environment).

The upper-level shell might be menu-
driven, leading CBT authors through the
creation of standard instructional se-
quences. If authors wish to develop non-
standard sequences, however, they can
“drop down” to the language in which the
upper-level shell is written, gaining access
to more primitive system commands and
functions. While working at the lower
level, authors can “jump back up” to the
upper level at any time, with the system
automatically incorporating the non-
standard code inserted at the lower level.

I'll use a common multiple-choice inter-
action as an example of both the useful-
ness of being able to move between

Jesse M. Heines, Ed.D., is an assistant
professor of computer science at the
University of Lowell in Lowell,
Massachusetts. He is the author of
Screen Design Strategies for Computer-
Assisted Instruction as well as
numerous articles on courseware
development. Dr. Heines provides train-
ing and consuttation on CBT, develops
custom training programs on contract,
and writes “The CBT Craftsman” every
other month.

authoring levels and an example of how a
multi-level authoring systemn might appear
to course authors.

Let’s suppose we're developing a course
on basic open-water scuba diving, and we
want to ask the question shown in Figure
1. This screen is rather basic, containing a
very simple graphic (the international
scuba flag), a title, a question that contains
only text, and four multiple-choice, text-
only alternatives. (I always label my mul-
tiple-choice alternatives with numbers
rather than letters because the numbers
are easier for non-typists to find on stan-
dard QWERTY keyboards.)

This type of screen is easily created with
most authoring systems by specifying the
text of the question followed by its four
alternatives. In some authoring systems, all
of the text will be contained in one text
block. In others, the texts of the alter-
natives might be specified separately so the
system can “randomize” the alternatives,
thus generating multiple forms of the
question.

Once the question and alternative texts
are entered, most authoring systems ex-
pect the author to indicate which of the
alternatives are “correct.” In addition (or
perhaps concurrently) the author is ex-
pected to enter responses to be displayed
to the student for each of the possible alter-
natives or branches to occur when each
alternative is selected.

For example, for the question shown in
Figure 1, alternative 2 is the only correct
answer. ff the student selects alternative 1,
the system might respond as shown in
Figure 2. Once again, this type of interac-
tion gan usually be specified most easily at
the highest level of the authoring system
because it's straightforward and involves
only text.

Now comes the fun part. Suppose that
the numbers 58 and 42 presented in the
question text are actually generated by the
program using some algorithm rather than
“hard-coded” in the question text. We must
now generate both the question and our
explanation for wrong alternatives “on the
fly” rather than being able to specify them
directly to the authoring system. The ad-
vantage of this approach is that one ques-
tion format can generate a very large
number of actual questions, allowing
students to practice the skills repeatedly
until they master the concepts.

But we must first write the algorithm for
selecting the numbers. Some authoring
systems will allow you to do this at the top
level by indicating, for example, that the
first number is an integer between, per-
haps, 30 and 70, and the second is an in-
teger between perhaps 40 and 60. Unfor-
tunately, the problem isn’t that simple,
because the logical range of the second
number will be dependent upon the value
of the first number.

No big deal, you say—just use the first
number in the expression for the second.

Reprinted with permission.

That won't quite work in this case, because
the relationship is not algebraic. What you
really want is to look up the first number in
a data structure that contains the standard
“Dive Tables” and derive a logical range for
the second number from the data struc-
ture. (“Dive Tables™ are charts that relate
dive depths, times, and surface intervals to
blood nitrogen levels so that divers can de-
termine how long they can stay at specific
depths without risking decompression
sickness, or the “bends.”) This data struc-
ture will also provide logical response alter-
natives which, again, cannot be generated
algebraically.

This type of data manipulation is usually
beyond the scope of most authoring sys-
tem top levels. We therefore want to drop
down to a lower level where we can access
data files and do compiex calculations.
Once we have our data, we want to store it
in variables that can be used in the text dis-
play statements at the top level. At the top
level, the lower level code will look like a
subroutine call, with its complexities hid-
den. The subroutine might be written by a
programmer who is not the primary course
author. All the course author needs to
know is how to call the subroutine and
how to refer to the numbers returned from
the lower level code so that he or she can
include these variables in the question
text. In this way, the two levels allow
course authors to take advantage of all the
text formatting, error checking, and pre-
programmed multiple choice interaction
provided by the authoring system, without
limiting authors’ ability to generate a large
number of complex questions whose data
is generated by a subroutine.

Let's take things one step further. Sup-
pose that instead of responding with the
simple text message shown in Figure 2
when the student selects alternative 1, we
want the system to go into a detailed ex-
planation of why the response is wrong
and review for the student how to derive
the answer from the Dive Tables. To do
this, we want the system to display ap-
propriate sections of the Dive Tables in a
window and indicate how each is used to
derive the answer. (There are three Dive
Tables that must be consulted.)

The first such display might look like
that shown in Figure 3. The appropriate
section of the first Dive Table is displayed
with the relevant reference data circled.
The numbers within the box represent
times in minutes. The numbers in the
reverse video indicate the maximum total
time a diver can stay at that depth without
risking decompression sickness. This for-
mat is copied directly f?;m the actual
tables.

Generating this screen “on the fly” takes
even more computing than generating
reasonable alternatives. The system must
“know" how to use the Dive Tables so that
it can decide the appropriate section to
display and format the screen to fit within

8 TRAINING NEWS

8 minutes
B 16 minutes
B8 34 minutes
44 minutes

Basic Open Water Scuba
Review Questions

6. A diver has completed one dive to 58 feet for 42 minutes
and has rested on shore for one hour. He how wishes to
do another dive to the same general area. fissuming that
he does not exceed 58 feet on his second dive, how long can
he stay down without requiring a decompression stop?

Figure 1 is a fairly standard CBT screen. 1t has a graphic, a title. a question, and four possible answers.

B 16 minutes
@ 34 minutes
44 minutes

Basic Open Water Scuba
Review Questions

6. fi diver has completed one dive to 58 feet for 42 mihutes
and has rested on shore for one hour. He how wishes to
do another dive to the same general area. fissuming that
he does not exceed 58 feet on his second dive, how lohg can
he stay down without requiring a decompression stop?

0 8 minutes @ Yo, Fh/s fime does nof fike Fhe one
poar surface infervil infe account,
which changes fhe Repelifive Dive
Eroup from X Yo & Try again.

Figure 2. The student has chosen the first answer, which is wrong. The slandard response from the
authoring system is to simply notify the student that his or her answer is wrong. This parlicular system

adds a brief explanation.

Basic Open Water Scuba
Review Questions

do another dive to' t¥

6. A diver has completec| Yo, sfarsf witsh # 60/50 d&ive schedule
and has rested on st} #o gef Repefifive Bive Sroup ¥ ...

STARY + 4+ 3 + 4
he does not exceed £ @
he stay down without DEP“'_ (_feet) 10 50 79
Repelitive F 58 40 30 20

§ minutes @
B 16 minutes

Dive

78
8@

@ 34 minutes
44 minutes

50 48 35
TN Y
16 70 45

J

Press

119 80

Figure 3. In this sophisticated screen, the system responds to the student’'s wrong answer hy not voly
specifying why the answer is wrong, but actually calling up the appropriate Dive Tahle and then showing

the student how to derive the direct answer.

the window. Most authoring systems ex-
pect the screen layout to be fixed at “com-
pile time,” allowing precious liltle reformat-
ting as the lesson is running. By allowing
the author to drop down to a lower level,
the system can give authors the ability to
tailor their courseware to individual stu-
dent responses. Once the display
parameters are computed, however,
authors will want to jump back up to the
top level to accept the simple RETURN key
press to display the next screen.

We now have two techniques for taking

advanlage of the leatures that authoring
systems offer, yet reinoving the restriclions
they often impose—making them callable,
as discussed in my July column, and pro-
viding multiple authoring levels, as
discussed in this column. In Novemnber's
“CBT Craftsman,” {'ll discuss a third tech-
nique, designing custom authoring "front
ends” for specilic instructional applica-
tions. As always, | encourage readers lo
write to me (in care of Training News)
describing other techniques for getting the
most out of our authoring tools. 0

