NOVEMBER 1985 5

-

There’s more than
me way to get lots
f information on a
mall screen. Try

ipening a window.

.*esse M. Heines

/ Sooner or later, every CBT developer
faces the problem of displaying a large
mount of information on a small comput-
r screen. This problem is particularly
cute if you want to mix color graphics
ith text on the same screen. To do this
n the ubiquitous IBM PC equipped with
e standard IBM color/graphics card, you
ust work in “medium resolution mode”
(320 pixels horizontally by 200 vertically),
hich provides 25 lines of only 40 charac-
rs each. (The 40 character restriction can
circumvented by defining your own,
arrower character set as described in my
eptember column.)

Now, I have often stated in my CBT de-
ign seminars that if you can’t say what
ou want on 25 40-character lines, perhaps
ou are trying to say too much. But this
n't always true. There are numerous
ases in which a graphic might take up
half or even more of the display, leaving
precious little space for explanatory text.
f you try to include running heads to help

Jesse M. Heines, Ed.D. is an indepen-
dent consultant based in Chelmsford,
Massachusetts. He develops custom
LCBT programs and provides training
nd consultation on CBT course de-
velopment. Dr. Heines is also an as-
sistant professor of computer science
K; the University of Lowell in Lowell,
lassachusetts, and the author of
Screen Design Strategies for Com-
puter-Assisted Instruction.

THE CBT CRAFTSMAN

Copyright 1985
Weingarten Publications, Inc.
Reprinted with permission.

1 Do Windows

students maintain their orientation in the
course, you will surely find that the
screen's the limit,

One way to solve these problems is to
use more sophisticated graphics cards that
provide higher resolution. This approach
can add considerable cost to the system:
a TecMar high resolution display card that
provides 16 text and graphic colors with
640 x 400 resolution on the IBM PC re-
tails for about the same cost as a basic IBM
PC itself. These cards also often require the
purchase of more expensive monitors to
display the higher resolution. In addition,
if you develop a CBT program that re-
quires the student to have a system with
such expensive additions and expect to sell
your program on a retail basis, you will
severely limit your market.

A much less drastic measure is to break
large displays into two or more screens.
In his book, Learning with Computers,
Alfred Bork points out that unlike printed
media, “white space” on computer screens
is “free.” That is, while printing an amount
of information on two pages of a book
costs the printer twice as much as printing
the same information on one page,
displaying information on two separate
screens in a CBT program costs no more
than displaying it on one screen. (To be
completely accurate, using two screens
with some CBT systems might require a
bit more disk space, but this isn’t usually
a problem.)

This multi-screen technique has three
drawbacks. First, for logical reasons, some
sets of information really have to be dis-
played on the same screen. Second, for
aesthetic reasons, using two displays when
you really want one tends to give your ma-
terial a choppy, elementary-school feel.
Third, for instructional reasons, the prolif-
eration of multiple screens that students
page through by pressing RETURN yields
the boring, noninteractive CBT that | have
frequently argued against in this column.

So what's to be done? The first step is
to divide the screen into a number of dif-
ferent functional areas, one for graphics,
another for explanatory text, a third for er-
ror messages, a fourth for orientation infor-
mation, and the like. Then, if you must
use two screens to display your explana-
tory text, you can go from one screen to
another changing only the text area, leav-
ing the graphic and other areas intact to
maintain continuity,

Now, I don't believe it is necessary to
keep the sizes of your functional areas the
same throughout an entire course. Some
graphics may be small, allowing large text
areas, while other graphics may be large,
encroaching upon other areas. As a rule
of thumb, 1 try to keep the sizes of my
functional areas consistent throughout a
single module (approximately 30-60 min-
utes of instruction), but allow them to vary
considerably in size from module to mod-
ule. I find this flexibility necessary because
| often change my instructional strategy
from one module to the next, both to fit
changes in the subject matter and to add
variety to the interactions. Note, however,
that small changes in the sizes of function-
al areas within a single module can usually
be made without the student even notic-
ing. If you key the areas in some way, us-
ing colored borders or varying fonts, the
student will be able to identify each area
easily even when the size varies consider-
ably.

Another technique is to overlay displays
using windows. Windowing has long been
used in graphics labs to expand screen
horizons, but has only recently found its

£ btmq the first character in the text.

pow kBys 4o fove the cursor around.
sﬂ!;ﬁﬁa&j@uiwefeniyﬁogoon

- the

and seben Hears ago, our -

éihéb% brou h* fort

i hey na{iuh “tonceived in libarty and
dedicéfed ‘to” the proposition that'all
meh aPE"created equal

way into the realm of CBT. | have seen the
term window used incorrectly by a num-
ber of vendors, however, so it is important
that | clarify my use of the term. Some CBT
systems allcw you to define an area on the
screen in which subsequent text or graph-
ics will be displayed. They allow you to
erase this area independently from the rest
of the screen and write into it without af-
fecting other screen areas. Technically, an
area with these features is not a window;
it is what Alfred Bork has called a view-
port.

Viewports are extremely valuable screen
control devices, particularly when students
are asked lo enter a sizeable amount of in-
formation. By restricting input to a view-
port, you can be sure that students do not
destroy your screen setup, no matter how
lengthy their responses. The key charac-
teristic of viewports, as far as this discus-
sion is concerned, is that they obliterate
whatever was in their space on the screen
before they were displayed. When you fin-
ish using a viewport and tell the computer
to delete its definition, the area that it occu-
pied becomes blank.

True windows act like viewports, but

55 nd ot
ihs'ﬁ:n et o)
he test. For example, the

on this con(unen’

N B

6 TRAINING NEWS

THE CBT CRAFTSMAN

with an added feature: the computer re-
members what was on the screen before
the window was displayed. When you fin-
ish using a window and teil the computer
to delete its definition, the area that it occu-
pied is restored to what it looked like be-
fore the window was defined. implementa-
tion of windows requires enough memory
to store multiple copies of the screen. For
this reason, most systems limit the number
of windows that can be overlaid simultan-
eously to a small, single-digit number.
Windows have many applications in
CBT. Besides allowing you to extend your
screen arbitrarily, they allow you to create
display structures that are otherwise nearly
impossible. Consider, for example, the dis-
play in Figure 1. This figure shows a rather
complex display with several functional
areas. The display itself is not stored as a
single entity, but rather as a coordinated

screen—has three main advantages. First,
it eliminates the need to regenerate the
screen. This would be a tedious program- -
ming task due to the way in which each -
screen builds from the previous one. Sec-
ond, it makes it possible to write a single’
routine for displaying the objectives, be-
cause the screen state is saved before the
objectives window is defined. The actual
screen state is irrelevant to the routine; it
is simply stored as a series of memory loca-
tions. Thus, the objectives window can be
displayed on any screen, and the window-
ing software assures that when the objec-
tive window definition is deleted, the
screen will be restored to the way it was
before the window was defined, regardless
of the complexity of that original state.
Third, the use of a window maintains the
instructional continuity because it simply
overlays a part of the screen temporarily

Al functions th our

nctio word processor depend ¢
gositlon of the cursor, 4 small réctangular block
hat marks 3 position in the tagt. For erample,
cursor below is marking the first charseter i

.G ® Use the four arrow keys to move the éurso around.
Press () when you ire ready fogoon, =

the teit

The objectives of Fhis module #re P "
). Orgenize dite Fo support your cutiine.

|2 Stafe avantoges and disadvanteges of
gitferent wrifimg fechnigues, . .ol

3. Use & rudimentary word processor.

Press (3 now to return to the instruction.

(Copyright 1985 by KJ Software, Inc., reproduced with perﬁni;sion) by

Figure 2 shows a window oQgrlaid on the graphics and text of F'igurey i Be"caus)e; ,
it is a true window, pressing RETURN would bring the user back to Figure

set of graphics and text that are displayed
one at a time (but very quickly) to form
the complete screen. It is important to un-
derstand that this screen builds from the
previous screen in viewport fashion. That
is, the “David” trademark (as in David and
Goliath) and the main title “Writing the
First Draft” were not redrawn from the pre-
vious screen, but the text and arrow graph-
ic were added, obliterating the previous in-
formation in those functional areas.

The course from which this display is
reproduced contained a “review objec-
tives” feature which allowed students to
see a restatement of the current module's
objectives at any time. When this feature
is invoked, the objectives are displayed in
a window as shown in Figure 2. Since this
functiona) area is a real window, pressing
the RETURN key with the objectives dis-
played restored the original screen exactly
as it was before the student invoked the
review objectives feature.

The use of windows for this feature—as
opposed to erasing the screen, displaying
the obiectives, and then regeneraling the

without destroying the visual context of
where the students were before they in-
voked the review objectives feature.
The implementation of windows, like
the implementation of character fonts 1
discussed in my last column, is not easy
if it is not provided by your authoring sys-
tem. The programming job is not within
the realm of typical lesson programmers,
but it is within the realm of typical systems
programmers. As [pointed out in my very
first column (“Anybody Can’t Do CBT,”
Training News, March, 1985), building
CBT with these levels of sophistication re-
quires a team approach. CBT authors must
not limit their instructional designs to
those types of interactions that they can
program themselves. There is much more
that can be done on a computer than is
dreamt of in most authoring systems’ phi-
losophies. Demand a system that provides
power—even above ease of use—and de-
mand the assistance of a programmer who
knows how to use that power. Then let
your imagination soar and your coutse-
ware shine. O

