IrainineNews

Volume VI, Number 11 July 1985

JULY 1985 5

GO

CBT authoring systems
are appealing for their
ease of use, but one of
the reasons they're so
easy to use is that
they’re not designed to
do very complicated
things.

Jesse M. Heines

The best CBT programmer | ever
worked with had red hair, a red beard, and
a Cuban wife. When [first met his better
half, I quickly tried out the only thing |
knew how to say in Spanish: “Eh! Que
pasa?,” which I'm told means “Hey!
What's happening?” She wasn't too
impressed, but then she didn't seem
offended either. Anyway, the phrase
became a kind of password between this
superprogrammer and me, and many
detailed code design sessions began with
one of us walking into the other's office
and chirping “Que pasa?” He never once
said that an interaction | had dreamed up

Jesse M. Heines is an independent
consultant based in Chelmsford,
Massachusetts. He develops custom
(BT programs and provides training
and consultation on CBT courseware
development. Dr. Heines is also an
assistant professor of computer
science at the University of Lowell in
Lowell, Massachusetts, and the author
of Screen Design Strategies for
Computer-Assisted Instruction.

THE CBT CRAFTSMAN

Copyright (c) 1985
Weingarten Publications, Inc.
Reprinted with permission.

couldn’t be implemented. He did, how-
ever, often quote the old adage, “The
impossible we do immediately; miracles
take a bit longer!”

One of the first problems this pro-
grammer and | addressed together was
that of handling optional student re-
sponses, that is, student input that is not
in direct response to a question. Such
optional responses include requests for
help, access to an on-line glossary, a look
at the objectives, a review of the previous
display, and so on. We wanted these
options to be available at all times, but
unfortunately, we were not working on
PLATO with its built-in HELP, TERM,
DATA, and BACK function keys and
complementary language constructs. The
options had to be available at all times,
regardless of whether the program was
expecting a single keypress or a series of
keystrokes followed by RETURN. This
called for us to design a generalized
student response parser, a subroutine
which accepts and interprets student
input. The parser grew and grew as we
programmed it to accept more and more
optional student responses. As the parser
became more elaborate, response time
slowed down. In our efforts to speed up
response time, we spent many hours
hunched over line printer listings of the
code making it more efficient. Whenever
the listings got too marked-up to follow,
we'd call for a break and queue a new
listing of the parser to the line printer.
“Que pasa?” thus soon evolved into
“Queue parser?”

Proponents of authoring systems
may look down on the decision to program
a parser to handle student responses and
say that one of the main reasons authoring
systems were developed was to eliminate
the need for CBT course developers to
program complex parsing routines. | will
agree, but only to a point. All authoring
systems provide a way to get, store, and
analyze student input, but many limit
analysis of that input to checking for
“right” and “wrong” responses and
branching to another section of code—or,
worse yet, another “frame”—based on the
student’s response. While a specific
authoring system may make programming
this type of interaction very easy, it may

at the same time make programming a
more complex interaction (or branching
decision) literally impossible. This phil-
osophy represents the worst aspect of
some authoring systems: they make the
simple trivial, but they make the complex
impossible.

Consider, for-example, the ubiquitous
multiple choice question. No matter how
sophisticated you may make your course
design, there is always some point at
which the author wants to ask the student
to choose from a fixed set of options. This
format may be clearly evident in a
common multiple choice test item, or it
may appear more subtly as a menu with
a choice of options. All of today's authoring
systems provide some easy method for
accepting a single student response to
multiple choice items. The problem arises,
however, when we begin to examine the
style of that interaction:
® Does the authoring system limit the
number of alternatives you can present,
or are you free to present any number?
Does it force you to mark the alternative
with letters, or can you use numbers as
well?

Can you make the program respond as
soon as a key is pressed, or must you
require the student to press RETURN
after typing his or her response?

Are there canned responses for unantici-
pated student input, e.g. a “6” when you
have only five choices, or can you

specify how the program should .

respond?

Does the authoring system give the
student a predetermined number of
chances to respond, or can you control
how many times the student is allowed
to try the question?

Is there any way to ask the student to
select more than one of the items on
the list?

Can you accept “coded” alternative
responses, such as a press of the F6 key
to back up to an explanatory display or
a response of “H” for help, in addition
to the identifiers for each of the alterna-
tives in the question?

Can students use the arrow keys to
move a pointer indicating their choice,
or must they type a response? (Use of
the arrow keys is very benefigial for non-
typists.)

Queue Parser?

Some authoring systems will
provide all of these options, while others
will be much more rigid. The rigid systems
not only stifle creativity and the
development of crafted courseware, but
they can also seriously affect the program’s
instructional effectiveness. Such rigidity
forces course’ authors to adapt their
teaching strategies to the capabilities of the
authoring system, thus simplifying the
range of interactions in the name of
simplifying the program implementation.
At their best, programs with restricted
interactions are boring; at their worst,

. they're instructionally stagnant.

Not everyone is as fortunate as I have
been to work ‘with a good programmer
who implemented interactions as 1 de-
signed them rather than as dictated by the
constraints of some authoring system.
Response handling is the most visible of
these constraints, but others exist, par-
ticularly in the display of graphics. For
example, 1 become very frustrated when
| know that my computer’s basic input-
output system provides sophisticated
graphics functions that 1 cannot access
from an authoring language. Alfred Bork,
the reknowned pioneer of computer-
assisted instruction in physics, and his
colleagues at the University of California
at Irvine develop all of their courseware
in Pascal. The reason for this choice,
according to Bork, is not that Pascal is a
particularly good authoring language. It is
that Pascal is simply a good language.

Remember [that naive courseware
authors, like naive computer users, stay
naive for only about two weeks. Sooner
or later they outgrow the capabilities of
almost all authoring systems and want to
do more sophisticated processing like pars-
ing. Another old adage—*make it simple
enough that any idiot can use it and only
idiots will”—holds true for authoring
systems as well as applications programs.
I am all for ease of use, but not at the
expense of functionality. Instead of trying
to shoehorn your instructional design into
a restrictive authoring system, get yourself
a real CBT programming language with a
rich set of subroutines—and a red-haired
programmer il necessary—and you'll
create CBT courseware that is instruction-
ally sound, visually stimulating, and com-
fortable for students to use.

