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Rule-based systems are a development associated with recent research in artificial 
intelligence (AI). These systems express their decision-making criteria as sets of produc­
tion rules, which are declarative statements relating various system states to program 
actions. For computer-assisted instruction (CAl) programs, system states are defined 
in terms of a task analysis and student model, and actions take the form of the different 
teaching operations that the program can perform. These components are related by 
a set of means-ends guidance rules that determine what the program will do next for 
any given state. 

The paper presents the design of a CAl course employing a rule-based tutorial 
strategy. This design has not undergone the test of full implementation; the paper 
presents a conceptual design rather than a programming blueprint. One of the unique 
features of the course design described here is that it deals with the domain of computer 
graphics. The precise subject of the course is ReGIS, the Remote Graphics Instruction 
Set on Digital Equipment Corporation GIG I and VTl25 terminals. The paper describes 
the course components and their inter-relationships, discusses how program control 
might be expressed in the form of production rules, and presents a program that 
demonstrates one facet of the intended course: the ability to parse student input in 
such a way that rules can be used to update a dynamic student model. 

1. The structure of a rule-based course 

O'Shea (1979) has argued that one of the most important aspects of any CAl program 
is its response-sensitivity: to assert that one teaching program is more response-sensitive 
than another teaching program is to claim that in some sense it is more adaptive to 
the individual learning needs of the students being taught than the other program. 
O'Shea's work achieved response-sensitivity by adopting Hartley's (1973) framework 
for adaptive teaching programs. This framework consists of the four compOnents listed 
below. (These components are described in more detail in the sections that folloW.) 

(I) The teaching operations are the different instructional activities that the CAl 
program can present. In the course design described in this document, these operations 
take the form of on-line presentations of new material, exercises directed at reinforcing 
specific instructional objectives, "laboratory" sessions in which students tryout graphics 
commands in a controlled environment, and formal tests. 

(2) The representation of the task is a detailed task analysis listing each component 
skill needed to master the material being taught. It is represented as a directed graph 
that defines the prerequisite relationships between each skill. 
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(3) The student model is a representation of the student's knowledge in terms of the 
task analysis and a history of the student's interactions with the program. It can be 
thought of as a state vector that describes the student's degree of mastery for each 
component skill and various other pertinent student characteristics. 

(4) The means-ends guidance rules relate states defined by the student model to sets 
of teaching operations. These rules determine which instructional activities the CAl 
program will present next given different student states. (See Heines, 1983, for a basic 
discussion of rule-based systems.) 

2. The vocabulary of teaching operations 

ReGIS, the Remote Graphics Instruction Set, allows programmers to perform a large­
variety of graphics operations on GIGI and VTl25 terminals manufactured by Digital 
Equipment Corporation. The course design presented in this paper limits itself to the 
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first three ReGIS instructions (Position, Vector, and Curve), screen addressing in 
absolute, relative, and default modes, and the use of the terminal's address stack_ The 
course employs four teaching operations: expository demonstrations, directed exer­
cises, a ReGIS "laboratory," and formal tests. The inter-relationships between these 
operations are shown in Fig. 1, and their characteristics are described in the sections 
that follow. 

2.1. EXPOSITORY DEMONSTRATIONS 

Expository demonstrations are basically "press-RETURN-to-continue" slide shows 
that introduce concepts. Of all the teaching operations, they exhibit the lowest levels 
of interaction and response-sensitivity. Their purpose is as much "telling" as it is 
"teaching," and they last about 3-5 minutes each. While one or two orientation 
questions may be incorporated into the presentation, the student's only real option is 
to interrupt the operation and call up a control menu. 

2.2. DIRECTED EXERCISES 

Exercises provide either computer-generated or prestored problems for students to 
solve. Student responses to exercises in this course will usually take the form of ReGIS 
command strings. The CAl program will parse these responses and provide extensive 
error checking with detailed feedback. 

The "directed" nature of the exercises refers to using the student's performance data 
to determine the type and difficulty of problems presented. This feature contributes to 
the program's response-sensitivity. Students who do well will find that the problems 
get harder quite quickly. Weaker students will be led along more slowly, making sure 
that they possess each component skill before higher level skills are presented. 

2.3. REGIS LABORATORY 

The third teaching operation demonstrates the greatest amount of response-sensitivity 
by providing students with a ReGIS "sketchpad" or "laboratory" environment in 
which they can enter ReGIS commands and see the results of these commands directly. 
The lab will be implemented in a dual screen format with the ReGIS code appearing 
on one side and the graphical output on the other (see section 6). 

The AI component here involves "watching" students as they enter commands, 
updating the student model for each skill demonstrated, and looking for cliche errors 
in their code. These techniques are similar to those of Burton & Brown (1982) and 
Shrager & Finin (1982). Even if the course does not attempt to offer any real "coaching" 
a la West (Burton & Brown, 1982), it could still provide detailed error messages for 
syntactic and simple theoretical errors similar to those in the directed exercises. A 
program demonstrating some of these capabilities in a prototype ReGIS Laboratory 
is presented in section 6. 

The difference between the directed exercises and ReGIS lab is the degree of computer 
control. If effectively implemented, measures of their instructional effectiveness should 
yield equivalent results. A major difference between the two styles, however, is that it 
is more difficult to identify missing prerequisites in a laboratory environment because 
there is no mechanism for asking direct questions. Failure to demonstrate mastery in 
this environment will therefore be coupled with more conventional directed exercises. 
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2.4 FORMAL TESTS 

When a student demonstrates a particular skill in either the directed exercises or ReGIS 
laboratory, the probability with which she/he actually possesses that skill is somewhat 
less than 1·0. For example, a student may "discover" defaults by leaving out an X or 
Y value for the P command in the ReGIS laboratory. No error message would be 
generated, and the student may not even realize what has happened until some time 
later. While this situation represents an excellent (and some would say the best) learning 
scenario, it is impossible to know for certain whether the student has actually internal­
ized the concept she/he has just demonstrated. 

Evaluation of actual learning requires a formal testing situation. The administration 
of formal tests will be very similar to the methods employed for directed exercises, 
with the stipulation that part of the feedback will be eliminated. Formal testing need 
not be limited to mUltiple choice and short answer responses. 

3. The task representation 

3.1. LIST OF COMPONENT SKILLS 

Table I lists the component skills needed to master all aspects of the ReGIS Position, 
Vector, and Curve commands covered in the course. Each of these skills represents 
the course's smallest possible instructional unit. That is, the course's AI component 

TABLE 1 
List of component skills 

Number Description 

1 Recognizes screen as a rectangular dot matrix. 
2 Can translate screen positions into (x, y) pairs. 
3 Can translate (x, y) pairs into screen positions. 
4 Knows absolute screen limits (767,479). 
5 Knows that initial cursor position is upper left-hand comer of screen. 
6 Understands the concept of current cursor position. 
7 Can interpret the standard [x, y] address format. 
8 Can specify absolute screen addresses in [x, y] format. 
9 Understands defaults. 

Given the current cursor position as [xc, YC], knows the meaning of: 
10 [x]-+[x,yc] 
11 [,y]-+[xc,y] 
12 []-+[xc,yc] 
13 Understands relative addresses. 

Given the current cursor position as [xc, YC], knows the meaning of: 
14 [±x, +y]-+ [xc± x, yc ±y] 
15 [±x] -+[xc ± x, yc] 
16 [,±y]-+[xc,yc±y] 
17 [±x,y]-+[xc±x,y] 
18 [x,±y]-+[x,yc±y] 
19 Can use the basic P command to position the cursor. 
20 Knows the current cursor position after execution of a P command. 
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TABLE I (cont.) 

Number Description 

21 Can use all addressing schemes in P commands. 
22 Can work with P command abbreyiations such as P[xl, yl] [x2, y2] ... [xn, yn]. 
23 Can store addresses on the stack with (B). 
24 Can pop addresses off the stack with (E). 
25 Can use the S(E) command to erase the screen. 
26 Can use the basic V command to draw a vector. 
27 Knows the current cursor position after execution of a V command. 
28 Can draw multiple vectors with a single V command. 
29 Can draw closed polygons using (B) and (E) in V commands. 
30 Knows the terms "open" and "closed" as applied to figures. 
31 Can use the basic C command to draw circles. 
32 Knows the current cursor position after drawing a circle with the basic C 

command. 
33 Can use the C(C) command to draw circles. 
34 Knows the current cursor position after drawing a circle with the C( C) command. 
35 Understands angle measure in degrees. 
36 Can translate angle measures into screen angles. 
37 Can translate screen angles into angle measures. 
38 Can use the qA(degrees») [X, y] command to draw arcs starting at [X, Y] and 

using the current cursor position as the center. 
39 Knows the current cursor position after drawing an arc with the C (A(degrees») 

[X, Y] command. 
40 Can use the C(A(degrees)C) [X, Y] command to draw arcs starting at the current 

cursor position and using [X, Y] as the center. 
41 Knows the current cursor position after drawing an arc with the qA(degrees)C) 

[X, Y] command. 
42 Can draw open curves with the C(S) command. 
43 Understands interpolation. 
44 Can use [ ] at the front of a C(S) command. 
45 Can use [ ] at the end of a qS) command. 
46 Knows the current cursor position after execution of a C(S) command. 
47 Can draw closed curves with the C(B) command. 
48 Can use [ ] at the front of a qB) command. 
49 Can use [ ] at the end of a qB) command. 
50 Knows the current cursor position after execution of a C(B) command. 

will be designed to identify skills that a student lacks and route him or her to the 
specific teaching operations on those skills. 

The component skills will be grouped into modules for presentation to students 
going through the course for the first time. This does not mean that remedial work on 
one skill in a module necessitates redoing the other skills in that module. It simply 
means that the skills will be presented together the first time for the sake of continuity 
and organizational convenience. 

Skills 35 and 43 will not actually be taught in the course. These skills involve 
understanding angle measure in degrees and interpolation, respectively, and are what 
Mager & Pipe (1974) call "entry level objectives." They are required for students to 
master higher level objectives, but students are expected to bring these skills to the 
course rather than learn them from the course. 
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3.2. PREREQUISITE RELATIONSHIPS: DIRECTED GRAPH 

A number of prerequisite relationships exist between the 50 component skills. Such 
prerequisites indicate those skills a student must possess in order to master higher 
level skills. Figure 2 shows the prerequisite relationships represented by a directed 
graph. 

o Indic;otel 
Ikilll with no. 
prerequilitel 

t t 

FIG. 2. Task model represented as a directed graph. 

This graph should be interpreted as follows: 

• Nodes inside shaded squares represent skills with no prerequisites. These are 
Skills I, 25, 35, and 43 . 

• The skill hierarchy reads from bottom to top. Lines connecting two skills indicate 
that the higher level skill requires the lower level skill below it as a prerequisite. 
For example, Skill 2 requires Skill I as a prerequisite. 
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• When two or more lines lead into a node from the bottom, all of the lower level 
skills are required as prerequisites. For example, Skill 5 requires both Skills 3 
and 4 as prerequisites. 

• When two or more lines lead out of a node from the top, the lower level skill is 
a prerequisite for each of the higher level skills. For example, Skill 26 is a 
prerequisite for Skills 27, 28, and 29. 

• The AND hexagon is not a node. It indicates that all of the lower level skills are 
required as prerequisites for each of the higher level skills. For example, Skills 
6 and 7 each require both Skills 2 and 3 as prerequisites. 

• The OR hexagon is not a node. It indicates that anyone of the lower level skills 
is sufficient prerequisite for each of the higher level skills. For example, Skill 19 
requires anyone of Skills 10 through 18 as a prerequisite. 

(The AND and OR hexagons were used to keep the graph readable by avoiding a 
large number of crossing lines. Note that Skill 19 requires any of Skills 10-18, while 
Skill 20 requires all of Skills 10-18. Skill 21, therefore, requires all of Skills 10-20.) 

3.3. PREREQUISITE RELATIONSHIPS: PRODUCTION RULES 

The directed graph presented in the previous section is equivalent to the set of facts 
listed in Table 2. 

This table should be interpreted as follows: 

• NIL in the left-hand column indicates that no prerequisites are required for the 
corresponding skills in the right-hand column. For example, no prerequisites are 
required for Skills 1,25,35, and 43. 

• If more than one skill is listed on a single line in the left-hand column, all of 
those skills are required as prerequisites for the each of the skills listed in the 
right-hand column. (This is the AND function.) For example, Skills 3 and 4 are 
both required as prerequisite for Skill 5. 

• If more than one skill is listed on a single line in the right-hand column, all of 
the skills listed in the corresponding left-hand column are required as prerequisites 
for each of the skills listed in the right-hand column. For example, both Skills 6 
and 7 require Skills 2 and 3 as prerequisites. 

• If a skill appears on more than one line in the left-hand column, that skill is 
required as a prerequisite for more than one higher level skill. For example, Skill 
3 is required as a prerequisite for Skills 5, 6, and? 

• If a skill appears on more than one line in the right-hand column, any of the 
corresponding left-hand columns provides sufficient prerequisites for that skill. 
(This is the OR function.) For example, Skill 19 requires anyone of Skills 10 
through 18 as a prerequisite. 

Using these facts, the prerequisite relationships (and thus the entire representation of 
the task) can be defined by production rules. The full set of production rules defines 
the program's task model. 

The production rule formalism makes it conceptually simple to identify both the 
skills for which the student has met the prerequisites and the prerequisites needed to 
study any particular skill. For example, suppose that a rudimentary student model 
consists of a simple list of the skills that a particular student has mastered. Such a list 
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TABLE 2 
Task model represented as production rules 

If the student has mastered these skills ... 

NIL 
1 
2 3 
3 4 
6 7 
7 
8 9 
8 13 
8 
9 13 
10 11 12 13 14 15 16 17 18 
10 
11 
12 
13 
13 
14 
15 
16 
17 
18 
19 20 
21 
23 
24 26 
26 
29 
31 
33 
34 36 37 
35 
38 
40 
42 43 
43 47 
44 45 
48 49 

She/he has met the prerequisites for these 
skills ... 

1 25 35 43 
234 
6 7 
5 
13 
8 9 
10 11 12 
17 18 
23 
15 16 
20 
19 
19 
19 
14 
19 
19 
19 
19 
19 
19 
21 
22 26 31 33 42 47 
24 
29 
27 28 
30 
32 
34 
38 40 
36 37 
39 
41 
44 45 
48 49 
46 
50 

might contain 1,2,3, 7, 8, 9, and 12. A function can then be written that steps down 
the list of task model rules, testing whether each left-hand side (LHS) is a perfect 
subset of the student model. If it is, the student has met the prerequisites for the skills 
listed on the right-hand side (RHS) of that rule. For the example list of skills shown 
above, this function would identify the 'skills 4, 6, 10, II, 19,23, 25, 35, and 43. For 
a fuller understanding of why this is so, compare this list to the graph in Fig. 2. The 
student is ready for: 

• Skill 4 because the list of skills mastered includes Skill I . 
• Skill 6 because it includes both Skills 2 and 3. 
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• Skills 10 and II because it includes both Skills 8 and 9. 
• Skill 19 because it includes Skill 12 (only one of Skills 10-18 is required for Skill 

19, but note that the student is not ready for Skill 20, because that skill requires 
all Skills 10-18). 

• Skill 23 because it includes Skill 8. 
• Skills 25, 35, and 43 because these have no prerequisites. 

The discussion thus far has concerned moving up the directed graph to answer the 
question: "given a specific set of mastered skills, which skills is the student now ready 
to study, i.e. for which skills does the student now possess the prerequisites?" The 
beauty of the production rule approach is that the same representation can be used 
equally well to move down the directed graph and answer the converse question: 
"given a specific skill, which prerequisite skills must the student possess to be ready 
to study it?" This characteristic is crucial to achieving the AI diagnostic qualities of 
the directed exercises and ReGIS laboratory discussed in sections 3.2 and 3.3. 

For example, suppose that the student hadn't really studied all of the skills specified 
by the list 1,2,3,7,8,9, and 12. Instead, she/he may have actually only studied Skill 
12. By virtue of demonstrating mastery on that skill, the system's AI component will 
update its student model by marking the student's mastery of all the skills prerequisite 
for Skill 12 as "assumed." To determine which skills to mark, a function can be written 
that tests the RHS of each rule. If the skill just mastered is a member of the list of 
RHS skills, mastery of each of the skills listed on the LHS is assumed. 

In practice, the function described above would be called with the number of the 
skill just mastered and a list of skills representing the student model. The function 
would then return a list of RHS skills that are not already members of the student 
model. If, for example, the student model list is empty, calling this function with "12" 
as an argument would return the list of skills I, 2, 3, 7, 8, and 9. Ifthe student model 
already indicates mastery on Skills I and 3, calling it with "12" as an argument would 
return the skills 2, 7, 8, and 9. 

4. The student model 

4.1. SKILL STATUS 

The basic purpose of a student model is to represent a student's current knowledge 
state. In its simplest form, this state might be defined by the student's status on each 
of the skills in the task model. As indicated in the previous section, one rudimentary 
way to do this is to maintain a list (or state vector) of those skills on which the student 
has demonstrated mastery. The utility of this list can be greatly improved, however, 
by letting the status of each skill take on a number of values. The student model 
employed in the course will use the following seven values: 

-3 NON-MASTERY DEMONSTRATED on a test. The student has demonstrated 
that she/he does not possess this skill by faiUng a test that covered it. This is 
the strongest assertion of non-mastery that the system can make. 

-2 NON-MASTERY ASSUMED due to incorrect usage in lab. The student is 
assumed not to possess the skill because she/he used the skill incorrectly in 
either the ReGIS laboratory or the directed exercises. 
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-1 NON-MASTERY ASSUMED due to incorrect usage of a prerequisite skill. The 
student is assumed not to possess the skill because she/he has either demonstrated 
non-mastery on or used incorrectly a lower level skill for which this skill is a 
postrequisite. (Note that the skill in question may be more than one level removed 
from the lower level skill on which the student is actually working.) This is the 
weakest assertion of non-mastery that the system can make. 

o NO DATA. The student has not studied this skill, has not demonstrated mastery 
on any skill for which it is a prerequisite, and has not demonstrated non-mastery 
on any skill for which it is a postrequisite. 

+ I MASTER Y ASSUMED due to correct usage of a postrequisite skill. The student 
is assumed to possess the skill because she/he has either demonstrated mastery 
on or used a higher level skill for which this skill is a prerequisite. This is the 
weakest assertion of mastery that the system can make. 

+2 MASTERY ASSUMED due to correct usage in lab. The student is assumed to 
possess the skill because she/he used the skill in either the ReGIS laboratory 
or the directed exercises. 

+ 3 MASTERY DEMONSTRA TED on a test. The student has demonstrated mastery 
of this skill by passing a test that covered it. This is the strongest assertion of 
mastery that the system can make. 

The student model value for each skill, is initialized to 0 when the student registers. 
As she/he works through the course, one of the non-zero values is assigned to each 
skill on which the system has or can infer data. These values add a level of complexity 
to the functions discussed in section 3, in that analysis of the production rules 
cannot be done simply by testing for the presence of a skill number in a list. The 
complication is not extreme, however, and should present no serious implementation 
problems. 

It is also possible to express a student model in terms of procedures rather than a 
state vector. See Self (1974), for a discussion of this technique. 

4.2. LEARNING RATE AND LEARNING STYLE 

In addition to a student's skill status, the student model can also maintain two simple 
and rudimentary representations of the student's learning rate and learning style. 
Learning rate is a measure of the student's ability to assimilate new material quickly. 
Learning style is a measure of the manner in which the student prefers new material 
to be presented. 

The student's learning rate will govern the speed, depth, and amount of repetition 
and reinforcement in initial presentations of new material. Fast students will receive 
fast presentations extending to considerable depth before going into the directed 
exercises as reinforcers. Slower students will be presented with more detailed introduc­
tions to new material at lower levels, and will find more repetition in the presentations 
as well as more frequent reinforcement via the directed exercises. Learning rate might 
be expressed as one of five values: VERY-FAST, FAST, AVERAGE, SLOW, and 
VERY-SLOW. 

The student's preferred learning style might be represented by one of three values: 

• EXPOSITORY-the student prefers to go through the full expository demonstra­
tion before doing exercises. 
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• EXERCISE-the student prefers to dive right into the directed exercises_ 
• LABORATORY-the student prefers to try things out in the ReGIS laboratory 

after a short explanation of pertinent concepts and commands_ 

A number of techniques exist for assessing learning style, but a finese is also feasible: 
simply ask students which style they prefer. Students will be allowed to change their 
learning style preference as the course progresses, as well as override the default 
selection for any particlar module. The system might monitor the number of overrides 
and change the default learning style when this number becomes significant. 

5. The means-ends guidance rules 

Means-ends guidance rules relate states defined by the student model and student 
history to specific teaching operations and determine which instructional activities the 
CAl program will present next given different student states. A rudimentary student 
history could be as simple a list of all responses entered by the student. In practice, 
this history might also flag responses to non-subject matter queries as "choices" made 
by the student, e.g. his or her selections when presented with a number of options on 
a menu. 

Sample means-ends guidance rules (in plain English format) might be as follows: 

I. If the student is entering a module for the first time, make the initial subject 
matter presentation in the form specified by the LEARNING-RATE and LEARN­
ING-STYLE elements of the student model. 

2. If the student is re-entering a module she/he has already studied and done well 
on, query him or her as to what skills she/he wishes to study and in what learning 
style. (The response to these queries will be recorded in the student history as 
"choices.") 

3. If the student is re-entering a module she/he has already studied but done poorly 
on, make subject matter presentations in EXPOSITORY style on all skills for 
which the student model indicates NO-DATA or NON-MASTERY, and make 
these presentations as if the value of LEARNING-RATE was SLOW or VERY­
SLOW. (This will force more repetition and reinforcement.) 

4. If the student demonstrates non-mastery on a specific skill and the student model 
indicates that there are no prerequisites for that skill on which mastery has not 
been demonstrated or assumed (that is, mastery has been demonstrated or assumed 
on all the prerequisites), branch to a secondary teaching operation for that skill 
if one exists. (Secondary teaching operations are ones that are designed for 
remediation only, no initial presentation.) If no secondary teaching operations 
exist for the skill in question, apply Rule 3 above. (The bulky negative wording 
in the IF clause was used to make this rule consistent with Rules 5 and 6.) 

5. If the student demonstrates non-mastery on a specific skill and the student model 
indicates that there is only one prerequisite for that skill on which mastery has 
not been demonstrated or assumed, apply Rule I to the module containing that 
prerequisite skill. 

6. If the student demonstrates non-mastery on a specific skill and the student model 
indicates that there are more than one prerequisite for that skill on which mastery 
has not been demonstrated or assumed, apply Rule 1 to the module containing 
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the prerequisite she/he is "most likely" lacking. (The system will determine which 
skill is "most likely" lacking by analyzing the student model values for other 
skills with the same prerequisites.) 

5.1. REPRESENTATION OF LEFT-HAND SIDES 

The left-hand sides (LHSs) of these rules (the IF parts) represent specific patterns to 
be matched against the student model and student history. For Rules 1,2, and 3, these 
data include the status of the module the student has chosen to study and the statuses 
of each of that module's sub-skills. The LHSs of these rules might therefore take the 
form: 

L «STATUS-OF-MODULE-CHOSEN EQUAL 0) 
(ALL-SUBSKILL-STATUSES EQUAL 0». 

2. «STATUS-OF-MODULE-CHOSEN (NOT EQUAL) 0) 
(AVERAGE-SUBSKILL-STATUS GREATER-THAN 0». 

3. «STATUS-OF-MODULE-CHOSEN (NOT EQUAL) 0) 
(AVERAGE-SUBS KILL-STATUS LESS-THAN 0». 

The function calls (STATUS-OF-MODULE-CHOSEN EQUAL 0) and (STATUS-OF­
MODULE-CHOSEN (NOT EQUAL) 0) would return TRUE if the status of the 
module chosen is equal to or not equal to 0, respectively. The function call (ALL­
SUBSKILL-STATUSES EQUAL 0) would operate on sets of skills, and return TRUE 
if each of those skills has a status value equal to O. Likewise, the function calls 
(AVERAGE-SUBSKILL-STATUS GREATER-THAN 0) and (AVERAGE­
SUBSKILL-STATUS LESS-THAN 0) would return TRUE if the average subskill status 
value is greater than or less than 0, respectively. When the values of all function calls 
on the LHS of a rule are TRUE, that rule fires. 

For Rules 4, 5, and 6, the patterns to be matched would include the status of the 
particular skill just studied and the statuses of each of that skill's prerequisite skills. 
The LHSs of these rules might therefore take the form: 

4. «SKILL-STATUS LESS-THAN 0) 
(NO-PREREQ-SKILL-STATUSES LESS-THAN 0». 

5. «SKILL-STATUS LESS-THAN 0) 
(ONLY-ONE-PREREQ-SKILL-STATUS LESS-THAN 0». 

6. «SKILL-STATUS LESS-THAN 0) 
(MORE-THAN-ONE-PREREQ-SKILL-STATUS LESS-THAN 0». 

5.2. REPRESENTATION OF RIGHT-HAND SIDES 

The right-hand sides (RHSs) of the rules (the THEN parts) can be expressed as a 
TEACH function with the form: 

(TEACH (MODULE-ID 
SKILL-ID 
LEARNING-RATE 
LEARNING-STYLE 
SEARCH-STRATEGY) ) 
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where 

• MODULE-ID represents the module to be entered_ 
• SKILL-ID represents the skill to be taught, as identified in Table I. 
• LEARNING-RATE represents the amount of repetition and reinforcement to 

use in presentations. 
• LEARNING-STYLE represents which of the three types of teaching operations 

to use. 
• SEARCH-STRATEGY represents the manner in which this teaching operation 

was selected, e.g. REMEDIAL or MOST-NEEDED. 

Using this format, the RHSs of the sample rules could be expressed as follows: 

l. (TEACH (MODULE-CHOSEN 

* 
LEARNING-RATE 
LEARNING-STYLE 
*)) 

2. (TEACH (MODULE-CHOSEN 
QUERY 
FAST 
QUERY 
*)) 

3. (TEACH (MODULE-CHOSEN 
(SKILLS-WITH-STATUSES (LESS-THAN OR EQUAL) 0) 
SLOW 
EXPOSITORY 
*)) 

4. (TEACH (MODULE-CONTAINING-SKILL 
SKILL 
LEARNING-RATE 

* 
REMEDIAL)) 

OR 
(TEACH (MODULE-CONTAINING-SKILL 

SKILL 
SLOW 
EXPOSITORY 
*)) 

5. (TEACH (MODULE-CONTAINING-PREREQUISITE-SKILL 

* 
LEARNING-RATE 
LEARNING-STYLE 
*)) 

6. (TEACH (MODULE-CONTAINING-PREREQUISITE-SKILL 

* 
LEARNING-RATE 
LEARNING-STYLE 
MOST-NEEDED)) 
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The asterisk is a wild card that matches any value of the function argument list in the 
corresponding position. 

The RHS for Rule 4 has two TEACH functions to cover the case in which no 
secondary teaching operations exist for a specific skill. This representation makes the 
rules more complex, but provides explicit definition of what to do if a TEACH function 
request cannot be filled. Another way to tackle this problem is to use only one TEACH 
function in each rule but check whether the rule succeeds after the RHS fires. If the 
rule does not succeed, the system must continue looking for another rule whose LHS 
matches the data in the student model and student history, 

6. A prototype ReGIS laboratory 

We have implemented a prototype of the ReGIS Laboratory to test some of the concepts 
presented in this paper and to demonstrate the use of these techniques in a graphics 
domain. This section describes selected reproductions of sample screens from an actual 
run of the prototype program. 

6.1. SCREEN LAYOUT 

Figure 3 shows the basic screen layout. The screen includes a number of functional 
areas (Heines, 1984), but the main feature is that ReGIS code entered by the student 

THE ~e'-::;IS L t--,BIIf:.h1UF I 

The stack is e""t~. 

The current cursor position is [!!!50.250J. 

Enter P and V cO"'afuls to ,"ave the 
cursor around inside the box. 

[400,1501 

[400.3!i01 

[700,1501 

[700.~01 

FIG.3. The initial state of the ReGIS laboratory for new students. Note that novalues have yet beenasignedto the 
student model. 

appears on the left-hand side and graphical output for correct ReGIS commands 
appears on the right. Other functional areas include messages informing the student 
of the contents of the stack and the current cursor position. The area reserved for 
displaying the results of entered ReGIS commands is of course only a portion of the 
screen's addressable area, but students are requested only to enter commands that 
keep the cursor within this area. Commands that move the cursor outside the reserved 
area are not executed. 
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The Skill Status display at the bottom of the screen is for demonstration purposes 
only. This display would not appear in a real version of the course, although it might 
be advisable to make it available to students if they so request. It has little meaning, 
however, without a clear understanding of the course's internal task representation, 
so it is debatable whether it should be made available to students at all. In any event, 
the display as it appears here is always shown in the demonstration software so that 
the system's student model building processes can be observed. 

The value assigned to each skill (see section 5.1 above) is displayed below the skill 
number, but 0 values are suppressed. The sample student has just registered at the 
point shown in Fig. 3, so the value assigned to each skill is 0 and no values are displayed. 

6.2. PROCESSING A SIMPLE STUDENT ENTRY 

Figure 4 shows a simple student entry to the ReGIS Lab: p[600, 200]. This is a ReGIS 
Position command and should move the graphics cursor to the point with an X 
coordinate of 600 and a Y coordinate of 200. 

! H F P.-' - L L t--I B u F t4 1 r If· I 

The stack is ....,.t~. 

The current cursor position is 15eO.250I. 

Enter P and V CQIIOIands to IIIOYe the 
cur5OT' around inside the box. 

----+ pl600,20011 

1400,1501 

1400,3MI 

1700,1501 

1700,3501 

I' "" •• : - ~ - - - • j .1 ..t ~ _ .1 .1 .i .1 .! ~ 

, .!' .' _ ~. ~ i .1 r , ..! ~ , ." .! ~ , • 

FIG. 4. A simple ReGIS "position" command entry. 

The system begins parsing the student's entry in Fig. 5. The entered string is repeated, 
and the system prints "Working ... " to indicate that it has begun parsing. The parsing 
process is rather slow, especially on a loaded system, so the need for some type of 
"I'm busy" message was critical. 

Figure 6 shows the state of the Laboratory after parsing of the student's entry is 
complete. 

The display has changed from Fig. 5 in the following ways: 

• The "Working ... " message has been erased to indicate that parsing of the entire 
entry is complete. 

• An arrowhead has been positioned under the character at which parsing stopped. 
• "OK" has been printed under the arrowhead to indicate that no errors were found 

during parsing. 
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1 I f[ I· • r It; l I I F~ f 1 I I If· I 

The stad< ill I!IOPt~. 

The ",rrent ",rsor f'Olli hen is [!i50,2e0J. 

Enter P and V cooollands to IIDVe the 
",rsor around inside the box. 

Entr~: p[600,2001 

Itbrllil19' ••• 

[400,1e01 

[400,3e01 
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[700,1e01 

[700,31501 

• .,' • 1 •• 1 • - - • ~ - -! I!! ___ • -1 • 

1 -.! - t . ' \', 'o'.!-- '1.1-, ! -. 

FIG. 5. Parsing begins. The system repeats the command and prints "working ... " to indicate that it has begun 
parsing. 

The stack is e""t~, 

The current ",nor f'Osi Han is [600,2001. 

Enter other P and V CCNlllOands using 
different t~"es of addreSSing. 

Entr~: p[600,2001 
~ 
01:: 

[400,1501 1700,1501 

[400,3501 [700,3501 

• : ';~' ,., - - •• ~.'.~~-14j!~\' 

J >- , ,_ r • - ~, .: J ~ • .. 1 ~ - 4- -- • 

111 1211 2 

FIG. 6. Parsing complete. The system displays an up arrow where parsing terminated, executes the student's 
command in the ReGIS window, renews the stack and position messages, updates the student model, prints 

"OK" to complete the problem, and displays new directions. 

• The student's command has been executed in the graphic area at the right of the 
screen, moving the graphic cursor to position [600,200]. 

• The current cursor position message at the top left of the screen has changed 
from [550,250] to [600,200]. 

• The wording in the directions has changed slightly since a command has already 
been processed. 

• The student's previous entry has been erased from after the arrow prompt to 
make room for a new entry. 

• The student model vector at the bottom of the screen has been updated. 
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Look more carefully at the student model vector at the bottom of the screen. A value 
of +2 has been assigned to Skills 8 and 19 because the student's entry demonstrates 
correct use of these two skills. A value of + I has been assigned to Skills I, 2, 3, 7, 9, 
and 10 because these skills are prerequisite to Skills 8 and 19. 

These actions reflect the skill hierarchy shown in Fig. 2. When viewing these actions 
in context, however, it appears questionable that the system should make decisions 
concerning Skills 9 and 10 for this student entry. This situation clearly demonstrates 
the power and flexibility of the rule-based approach, because it indicates that the 
student model is in need of "fine tuning" to reflect the task analysis more accurately. 
Since all student model updates are goverened by production rules, the fine tuning 
can be easily accomplished without requiring substantial reprogramming. 

6.3. PROCESSING A COMPLEX STUDENT ENTRY 

Figure 7 shows a complex student entry to the ReGIS Lab: v(b)[+50,+100] [450] (e). 

! III 1.-' - J !...---.\ I II· ~ 1 f q. I 

The stKk is Mpt~. 

The current cur!iOr position is [600,2001. 

Ent.r other P WId V c~rds using 
diUerent t~pes of addressing. 

-+ v(bl [+50, +1001 [4501 (ell 

Entr'lj: p[SOO,2001 .. 
OK 

[400,I!101 

[4OC),3!I01 

[700,I!101 

[700,3!I01 

,_ ••• ,.... - - .'. _.'. j.'..1 •• .!. 

• .'. r, " j r, '.'.'. "":", 

111 1 2 11 2 

FIG. 7. A complex ReGIS "vector" command entry. 

This is a four-part ReGIS Vector command: 

(b) pushes the current cursor position onto the stack. 
[+50, + 100] draws a vector from the current cursor position to the position 50 

pixels to the right and 100 pixels down. 
[450] draws a vector from the current cursor position to the position with 

an X coordinate of 450 and a Y coordinate the same as that of the 
current cursor position. 

(e) pops an address off the stack and draws a vector from the current 
cursor position to that address. 

Parsing begins when the student presses RETURN, and Fig. 8 shows the screen after 
the first component has been parsed: 

• The student's entry has been copied and the original entry and directions erased . 
• The "Working ... " message has been printed to indicate that parsing is in progress. 
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'I-fr: I· ......... -1 l t---II I If h r! If· \ 

ThI! stad< contains «600,200)1. 

The current cursor position is 1600,200), 

Entr"\j: v(b>l+M,+100Jl4!iOJ<e) ... 
ItbrkJ"n$'. •• 

1400,l~1 

1400,3~) 
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1700,1~) 

1700,3501 

. - - -.!. J j J. ' 1 ~ 
, • ~ r • . ' .: ' , ~ , .! • , 

111 1211 2 2 

FIG. 8. Stack push. The system displays an up arrow where parsing terminated, renews the stack and position 
messages, updates the student model, and continues parsing. 

• An arrowhead has been positioned under the character to which parsing proceeded 
thus far. 

• The stack contents message at the top left of the screen has updated to indicate 
that [600,200] has been pushed onto the stack. 

• A value of +2 has been assigned to Skill 23 ("can store addresses on the stack 
with (B)") at the bottom of the screen. 

Parsing continues in Fig. 9: 

• The arrowhead has been moved over to indicate that parsing has proceeded 
through the second address in the command. 

ThI! stad< contains «600,2001 I. 

ThI! current cursor position is I~, 3001. 
144)O,l!101 17eO,l!101 

\ Entr"\j: v(b>l+M,+1I)OIl4!1OJ<e) ... 
144)O,:mol 1?OO,350) 

111 11211 12 2 2 

FIG. 9. Relative X and Y addressing. The system displays an up arrow where parsing terminated, executes the 
student's command in the ReGIS window, renews the stack and position meessages, updates the student model, 

and continues parsing. 
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• The results of executing the command so far are shown in the graphic area at 
the right of the screen, drawing a vector from the current cursor position 
([600,200]) to a position 50 pixels to the right and 100 pixels down ([650,300]). 

• The current cursor position message at the top left of the screen has been updated. 
• A value of +2 has been assigned to Skill 14 ("given the current cursor position 

as [xc,yc], knows the meaning of [±x, ±y]~[xc±x,yc+y]") and a value of +1 
has been assigned to Skill 13 ("understands relative addresses"). 

Parsing continues in Fig. 10: 

T I if f~ >- lit, I I If HI, If 

nw a\KIl c:cntaina (leee,2M)). 

nw c:urNnt c:ursor po5i\1on ia 14tiO, 3OOJ. 
1400,1501 174le,I50J 

Em..,.: v(b)[+!IO,+14l1J14!1elCe) 
~ 

144lI, :me J [710, :meJ 

111 11212 12 2 2 

FIG. 10. Absolute X and default Y addressing. The system displays an up arrow where parsing terminated, 
executes the student's command in the ReGIS window, renews the stack and position messages, updates the 

student model, and continues parsing. 

• The arrowhead has been moved over to indicate that parsing has proceeded 
through the third address in the command. 

• The results of executing the third part of the command are shown in the graphic 
area, drawing a vector from the current cursor position ([650,300]) to the position 
with an X coordinate of 450 and a Y coordinate the same as that of the current 
cursor position ([450,300]). 

• The current cursor position message at the top left of the screen has been updated. 
• A value of +2 has been assigned to Skill 10 ("given the current cursor position 

as [xc, YC], knows the meaning of [x]~ [x, yc]"). 
Note the difference between assigning a value of +2 to Skill 10 here versus 
assigning a value of + I to Skill I 0 in Fig. 5. Here defaults are used explicitly, 
yielding greater confidence that the student knows how to use defaults. In the 
previous example, a value of + I was assigned because the student used a higher 
level skill for which Skill 10 is a prerequisite. 

Parsing continues in Fig. II: 

• The arrowhead has been moved over to indicate that parsing has proceeded 
through the fourth address in the command. 
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The stu is .~. 

The cuMWlt cursor position is 1600,2eeJ. 

Enter ot~ P .-.d V ~ using 
different t~pn of ........ ing. 

---. 
Entf'll: v(b)(+50,+leeJ[4!If)J(e) • (J( 

111 11212 12 2 22 
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1400,1!1eJ 1700,15eJ 

14011, JIIO J 1700,3!leJ 

FIG. II. Stack pop. The system displays an up arrow where parsing tenninated, executes the student's command 
in the ReGIS window, renews the stack and position messages, updates the student model, prints "ok" to 

complete the problem, and displays new directions. 

• The results of executing the fourth part of the command are shown in the graphic 
area, drawing a vector from the current cursor position ([450, 300]) to the position 
popped off the top of the stack ([600,200]). 

• The stack contents message at the top left of the screen has updated to indicate 
that [600, 200] has been popped off the stack. 

• The current cursor position message at the top left of the screen has been updated. 
• New directions are printed to indicate that the system is ready for the next student 

entry. 
• A value of +2 has been assigned to Skill 24 ("can pop addresses off the stack 

with (E)") at the bottom of the screen. 

6.4. PROCESSING AN INCORRECT STUDENT ENTRY 

The screen has been cleared and the student now enters the incorrect entry shown in 
Fig. 12. The problem with this entry is that the "["in position 7 of the entry should 
be a"]". 

The error is detected in Fig. 13: 

• The arrowhead indicates the point at which the error was found and parsing 
stopped. 

• The word "ERROR:" is displayed to indicate that an error has been detected, 
and an explanatory error message is printed. 

• The student's original entry is erased to make room for him to enter a new 
command. 

• A value of -2 is assigned to Skill 11 ("given the current cursor position as [xc, yc], 
knows the meaning of [, y] -+ [xc, y]") and Skill 17 ("given the current cursor 
position as [xc, YC], knows the meaning of [±x, y] -+ [xc + x, y]") because the 
student's entry indicates incorrect usage of these skills. 
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r I j! f... 1 ! 0---1 I I I~' ... 1 I If 

TN stack is ...,.ty. 

The cu.....m cursor posi hon ill 1!i6I,2!!eI. 

Ent ... other P Iftd V ~ using 
diff....m ty .... of 8ddralIing. 

---+ p[,300["'-lot,200JII 

[400,11101 

[400,3!I01 
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[7tO,l11OJ 

[7oo,3!I01 

FIG. 12. A combination "position" and "vector" command that includes an error. The "[" in positin 7 should be 
a "J". 

I I ~ 1 • • 1 t ~ I ' 'f t' I I I I· , 

TN lIteel< ill ..,t~. 

TN cu.....m curaor posi hon ill [!i6I,2!leI. 

Ent ... other P Iftd V ~ uslng 
diffelW1t tt1f'115 of addreuing. 

---+ • 

Ent".: p[,300[ .. [-lee,2te1 
A 

£lIIWR: TN Y 8ddralI ..... i,.. • digit or 
t_iNtor in thill position. 
Ple_ t". .g_in. 

[400,11101 

111 112121 12 1 211122 111111111 

["",1501 

• 
[700,3!I01 

11111 1111111 

FIG. 13. Error detected. The system displays an up arrow where the error occurred, prints an error message, 
updates the student model, and displays new directions. Underlined values in the student model are negative . 

• A value of -I is assigned to all skills that require either of these skills as 
prerequisites. (Negative skill values are indicated in the Skill Status display by 
underlining due to space limitations.) 

The student re-enters the command correctly. Figure 14 shows the state of the screen 
after the first command component is parsed. In addition to the overall screen updates 
identified for previous Lab displays, note that the value of Skill II has been changed 
from -2 to +2, but that the -I values assigned to all postrequisite skills remain 
unchanged. 
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ThII .t.o. i • ..,.t~. 

The cur"l"'8rlt CUrsor' position i. 15!IO, Jeel. 

EntT'll: pl,3teJvl-lee,2e01 
.& 

IbrUt", ••• 

111 112122 12 i 2111 
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14tO,leel 1;>O&,leel 

14tO,JlleJ 1;>O&,3!I01 

FIG. J 4. Default X and absolute Y addressing. The system displays an up arrow where parsing terminated, 
executes the student's command in the ReGIs window, renews the stack and position messages, updates the 

student model, and continues parsing. Note that the value of skill 17 has been changed from -2 to +2. 

Figure 15 shows the state of the screen after the second command component is 
parsed. Note that the value of Skill 17 has been changed from -2 to +2. 

This two-part command reverses part of the damage done by the incorrect command 
entry in Fig. 12, but all of the -} values assigned to postrequisite skills remain. This 
feature allows the student model to "zero in" on the student's precise skill level. As 
before, all of these actions are governed by easily changed rules, so fine tuning the 
courseware to reflect the "real" skill hierarchy more accurately is not difficult. 

ThII .t.o. is ..,.t~. 

ThII cur"l"'8rlt CUrsor' posi tian i. 14M, 2MJ • 

Ent.,. other P .rid V .,."..,.. using 
di f,...."t t~pn of .cIdressing. 

---+ • 

14M,l!1e1 

14QO,3eel 

111 112122 12 2 211122 11111!1!1 

1;>O&,l!1e1 

17ee,3!le1 

1111! 1111111 

FIG. 15. Relative X and default Y addressing. The system displays an up arrow where parsing terminatd, 
executes the student's command in the ReGIs window, renews the stack and position messages, updates the 
student model, prints "ok" to complete the problem, and displays new directions. Note that the value of skill 17 

has been changed from -2 to +2. 
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6.5. IMPLEMENTATION NOTES 

Implementation of the prototype in MacLlSP on a DECsystem-20 showed that while 
the production rule formalism is highly efficient for expressing the prerequisite relation­
ships, use of this formalism to update the student model after each response is relatively 
inefficient. The main inefficiency stems from processing the rules repeatedly to find all 
of the prerequisites or postrequisites for the skill on which the student is currently 
working. This problem was solved by computing all of the prerequisites and postre­
quisites when the course is installed and storing these as lists in a simple array. This 
approach allowed the student model to be updated much more quickly without 
sacrificing the elegance of the rule-based strategy. 

The prototype also showed that the production rule approach can be applied 
efficiently to interpreting student responses. For example, the ReGIS command parser 
returned specific patterns related to the skills in the task model. For the ReGIS command 
"p[250, 100]", the parser returned: 

((COMMAND POSITION) (TYPE POINT) 
(X-VALUE-TYPE ABSOLUTE) (X-VALUE 250) 
(Y-VALUE-TYPE RELATIVE) (Y-VALUE-SUBTYPE +) 
(Y-VALUE 100» 

This result was related to the skills in the task model with the following rules (these 
are only a subset of the full set of address diagnostic interpretation rules): 

(((X-VALUE-TYPE ABSOLUTE) 
(((X-VALUE-TYPE ABSOLUTE) 
(((X-VALUE-TYPE DEFAULT) 
(((X-VALUE-TYPE DEFAULT) 
(((X-VALUE-TYPE RELATIVE) 
(((X-VALUE-TYPE RELATIVE) 
(((X-VALUE-TYPE DEFAULT) 
(((X-VALUE-TYPE RELATIVE) 
(((X-VALUE-TYPE ABSOLUTE) 

(Y-VALUE-TYPE ABSOLUTE» 8 19) 
(Y-VALUE-TYPE DEFAULT» 10 19) 
(Y-VALUE-TYPE ABSOLUTE» II 19) 
(Y-VALUE-TYPE DEFAULT» 12 19) 
(Y-VALUE-TYPE RELATIVE» 14 19) 
(Y-VALUE-TYPE DEFAULT» 15 19) 
(Y-VALUE-TYPE RELATIVE» 16 19) 
(Y-VALUE-TYPE ABSOLUTE» 17 19) 
(Y-VALUE-TYPE RELATIVE» 18 19) 

For each rule whose LHS was a perfect subset of the result returned by the parser, 
the program updated the student model by: 

(I) assigning a value of +2 to each the skill listed on the rule's RHS, and then 
(2) assigning a value of + I to each of the prerequisites for each of those skills. 

Thus the rule-based tutorial can employ several sets of rules for different functions. 
The advantage of this approach is that all such sets are easily changed to "tune" the 
course and enhance its response-sensitivity. 

7. Critique and conclusions 

The rule-based tutorial described in this paper has not undergone the test of full 
implementation. However, the approach described here is a conceptually clean 
extension of a working computer tutor that uses production rules in the teaching of 
quadratic equations (O'Shea, 1979). On implementation, some of the details of the 
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formalism described here will probably have to change to ensure computational 
efficiency and to maintain reasonable response time in the particular interactive com­
puter environment adopted. 

Production rule programming is not a trivial task, and one line of development being 
pursued is a rule-based authoring system which makes it easy for educational designers 
without substantial programming skills to enter and change sets of course-related 
production rules (O'Shea et al., 1983). However, we contend that even without access 
to such a system it is still more effective to build CAl programs by identifying tutorial 
rules than to use conventional CAl authoring languages, because the latter typically 
exhibit restrictive orientations toward automating programmed learning texts via the 
clumsy apparatus of frames, branches, and multiple-choice questions. 

In conclusion, we have shown how the rule-based approach can be usefully applied 
to the design of a course that includes exposition, directed exercises, a simulated 
laboratory, and tests. In the resulting course, the various teaching operations are 
modular and distinct, as are the production rules used in the student model for 
response-sensitivity and as means-ends guidance rules for scheduling the presentation 
of teaching operations. It is therefore possible, for example, to integrate new teaching 
operations into the course while maintaining the general level of response-sensitivity 
by adding new production rules. Likewise, any increase in response-sensitivity achieved 
in the student model will be applied to all teaching operations. We believe that these 
rule-based techniques represent an efficient and elegant approach to the task of 
designing and implementing CAl tutorials. 

This work was performed while the first author (J.H.) was a Visiting Researcher with the 
Computer Assisted Learning Research Group at The Open University. He is grateful to Tony 
Hasemer and Rick Evertsz for their help in programming test implementations of these ideas 
in LISP, and to the staff of the Academic Computing Service for making computer equipment 
and time available for this study. 

The second author (T.O'S.) is grateful to Richard Bornat of Queen Mary College for his 
substantial help in developing production rule formalisms for computer tutors. 
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