Logic and Recursion:
The Prolog Twist

Jesse M. Heines
Jonathan Briggs
Richard Ennals

Britain's young Prince William has been born into a famous
family. As he grows up he will become aware of the distin-
guished ancestry which links him with several centuries of Brit-
ish monarchs through both his father and his mother.

According to current reports, the popular Prince still ap-
pears to lack the physical and intellectual power to carry out an
exhaustive search for his forebears himself. However, he may
already know enough to initiate a computer-aided search: he
knows his immediate ancestors, his parents, as well as the next
level, the parents of his parents.

Given the names of William's father and mother, a database
of names connected by parent-child relationships, and an effec-
tive search strategy, one should be able to write a relatively
simple program to list his geneology.

The key to the programming task is that the problem is
recursive: for each level of ancestors, the next level can be deter-
mined by searching for the ancestors of those ancestors, and so
on until no additional ancestors can be found. A recursive
problem is one that can be broken down into two or more sub-
programs, at least one of which is the same as the original prob-
lem with a different set of conditions or arguments.

This article approaches the issue of recursion by describing a
traditional programming problem and comparing the ways it is
implemented in four languages: Basic, Pascal, Lisp, and micro-
Prolog. It is a programming exercise and does not purport to be
an exhaustive discussion of recursion or the recursive prop-
erties of the four languages. e

No claims are made that recursion i¥7*‘good” programming
technique, and we do not discuss its relative strengths and
weaknesses as compared to other techniques such as iteration.
Our purpose is simply to present an interesting illustration of
recursion across four languages to provide insight into the
subtle properties of each language.

The Factorial Function .

We will use the factorial function to illustrate recursion
throughout this article; as it is a classic example of recursive
programming. The factorial of any positive integer n is the

Jesse M. Heines, Digital Equipment Corporation, Educanional Services, Burlington.
MA 01803.

Jonathan Briggs and Richard Ennals. Department of Computing, Imperial College of
Science & Technology, University of London, London SW7 2BZ,

220

product of all positive integers from 1 to n and is represented
by the symbol n! By definition, the factorial of 0 is 1. Therefore:

o =1

=1

A=2X%X1=2
I=3IX2X1=6

4 =4X3IX2X1=24

Before proceeding to coding in a particular language, it will
help if we can develop a formal specification of the factorial
function. This can be done using a logical notation, starting
with the definition given above:

[1] O has factonal |

The factorial of a positive integer is the product of that inte-
ger and the factorial of the integer to which it is the successor:

[2] u has factorial vif 0 < u and

u is the successor of w and
w has factorial x and
xtimesu = v

The successor relationship is specified as:

[3] u is the successorof wifw + 1 = u

In traditional computing terms, the simplest way to solve the
factorial problem is via iteration. This can be illustrated with
the Basic program in Listing I, using a FOR/NEXT loop to
accomplish the iteration.

Listing 1.
Enter the number whose fac-

torial is to be computed.
Initialize the ANSWER to 1.

Handle the special 0 case.
Begin looping from N to 1.

Multiply the ANSWER by the
loop index.

19 INPUT N

290 LET ANSWER = 1

3@ [F N=3 THEN 70

49 FOR K=N TO l STEP -1

5@ LET ANSWER = ANSWER * K

6@ NEXT K Iterate over the next index.
78 PRINT ANSWER Print the answer.
99 END Stop.

A flowchart for the iterative solution is shown in Figure 1.
This program certainly does the job. but it is not a very clear
representation of the factorial function in terms of the formal
function specification given above. This lack of clarity is nor be-
cause the program is written in Basic, as will be seen in the next
section. It is because the solution uses iteration.

Recursion may or may not be more computer efficient, and it
may or may not be easier to program. These issues are beyond
the scope of this paper. However, as shown by the flowchart in
Figure 2, recursion allows one to code the factorial function in
a manner that is a much clearer representation of the formal
function specification. The sections that follow illustrate how
the recursive solution is programmed in four different
languages.

November 1983 © Creative Computing

Logic and Recursion, continued...

Enter the nusper wnose fac—
torial is to be computed.
\ 4

r Set the current answer to 1. 1

<&E>=

Set the ioop 1ndex to the rumber
whosa factorial is to be comsuted.,

Print tha
current ansuer.

Set tha current ansuer to
i1tseif times the loop iruiew.

-

factorial of N~

[Arguer 13 N times the

Figure 1. Flowchart of an interactive factorial function.

A Basic Implementation
Not all languages allow recursion, but this is really more a
property of the language implementation than the language
design. As stated earlier, a detailed technical discussion of the
language implementation requirements for recursion is beyond
the scope of this paper. But even Basic, that most maligned of
computer languages. allows recursion in some implementations.
Just to demonstrate that it can be done. Listing 2 shows the
code for a recursive. implementation of the factorial function
written in Digital Equipment Corporation’s Basic +2.
Listing 2.
10 DEF FNF (X) Begin the function
definition.
Handle the O case.

Handle ail other
cases.

20 IF X=¢@ THEN LET FENF=1l

30 IF X<>@ THEN LET FENF=X*FNF(X-1)

End the function
definition.

When the symbol FNF is used alone on the left side of the
equal sign in lines 20 and 30, it represents the result that the
function returns. When £NF (x-1) is used on the right side of
the equal sign in line 30, it represents a recursive call to func-
tion FNF with a new argument (the original argument minus 1).
The function is initially called with a statement such as:

100 LET F = FNF (4)

This function can be made more readable and efficient by using
other advanced features of Basic ~2, but we needn’t pros-
elytize turther here.

40 FNEND

A Pascal Implementation

While recursion may be somewfiitforeign to Basic pro-
grammers, it should be familiar ‘to. Pascal programmers.
Following is the code for a recursive Pascal definition of this
function:

Sfunction factorial (x:integer) : integer:

(declare the start of an

integer function with one

integer argument)

(begin definition biock)

(handle the O case)

factoral (x-1);

(recurse using the orig-

_ inal argument minus 1)
end: {end definition biock)

As in the Basic implementation. when the symbol “‘factorial”
is used alone on the left side of the :=sign it represents the re-
sult that the function returns. When it is used on the right side
of the : = sign within its own function definition, it represents a

222

begin
if'x = 0 then factorial : =
¢lse factoriai := x*

Figure 2. Flowchart of a recursive factorial function.

recursive function call. A Pascal statement for calling this
function would have the form: v
t := factorial (4);

A Lisp Implementatlon

With the recursion concept firmly in mind, we are now ready
to go a bit further by looking at two interesting languages that
are often used for logic and artificial inteiligence applications.
The first is Lisp:

(defun factorial (x) ; begin the function
; definition
; begin a conditionai block
; if the “equal” relation is
; true when x is compared to
; 0, return 1
(factorial (difference
x 1))))))
; in all other cases, return
; the product of x and the
; factorial of the difference
; between x and 1

This code may be difficult to follow for readers who are not
used to “prefix” notation, but this shouid be only a minor
stumbling block. Prefix notation puts the operation first, fol-
lowed by the two arguments. Thus, (equal X 0) means “if x
equals 0,” and (difference x 1) means “x minus 1.” The com-
ment following the last line of the code translates the recursive
call into English. A Lisp statement to call this function equiva-
lent to the two previous illustrations would look as follows:

(setg f (factorial 4))
which sets variable f to the value returned by the function call
(factonal 4).

One of the reasons for showing the Lisp implementation is
that it is relatively easy to trace Lisp functions to demonstrate
the recursive calling sequence. A trace of the above call to com-
pute the factonal of 4 is shown below. The first number in each
line is the recursion level. The number is parentheses at the end
of each ENTER FACTORIAL message is the argument with which
the function is called. The number at the end of each EXIT FAC-
TORIAL message is the result returned by that recursion level.

(1 ENTER FACTORIAL (4))

(2 ENTER FACTORIAL (3))
(3 ENTER FACTORIAL (2))
(4 ENTER FACTORIAL (1))
(5 ENTER FACTORIAL (0))
(5 EXIT FACTORIAL 1)
(4 EXIT FACTORIAL 1)
(3 EXIT FACTORIAL 2)
(2 EXIT FACTORIAL 6)
(1 EXIT FACTORIAL 24)

(cond

((equal x 0) 1)

(t (times x

November 1983 © Creative Computing

Logic and Recursion, continued...

A Micro-Prolog Implementation

Prolog is different from the three languages already dis-
cussed. Although there have been a variety of implementations
since 1972, Prolog has received considerable attention in recent
months, partly due to its adoption by the Japanese as the start-
ing point for their Fifth Generation machines, which are to be
based on logic programming.

The difference between Prolog and the other three languages
is that Prolog is declarative, while the others are procedural,
That is, rather than telling the computer sow to compute the
factorial of a number, in Prolog one tries to tell the computer
what the factorial of a number is.

Micro-Prolog is an impiementation of Prolog for micro-
computers. Since 1980 it has been available for microcomputers
with -the Z80 microprocessor and the CP/M operating system.
It is currently being implemented for a wide range of other
microcomputers such as the Sinclair Spectrum. BBC micro,
Apple, and Commodore 64.

Returning to our initial formal specification of the factorial
function, we can see that little work is required to code the
function in micro-Prolog. The sentence [1] in the specification
can be used pretty much as it stands, adding only a hyphen in
the relationship name:

[4] O has-factorial |

This is the simplest type of micro-Prolog statement because
no conditions are involved. More complex micro-Prolog state-
ments can be thought of as rules that define conditions under
which certain assertions are true. Sentence {2] in the formal
specification can be rewritten into such a rule using the micro-
Prolog convention where variablesare X, Y, Z, x. y, z, X1, Y1,
Z1, x1, yl, zl, etc., and the built-in arithmetic of the TIMES
program and the LESS relation. (Note that the uppercase and
lowercase letters represent different variables in this version of
micro-Prolog.)

[5] X has-factorial Y if

0 LESS X and

X is-the-successor-of Z and
Z has-factonial x and
TIMES (X X Y)

This definition of the “*has-factorial” relation is recursive be-
cause the relation name *“has-factorial” appears as one of the
conditional clauses within its own definition. Since X is defined
by the previous clause to be the successor of Z, Z must be X-1.
Thus, the recursive call in the clause “Z has-factorial x is
actually computing the factorial of X-1.

The specification of “‘is-the-successor-of”’ given in Sentence
[3] is coded in micro-Prolog using the buiit-in SUM program:

[6] X is-the-successor-of Y if SUM (Y 1 X)

The micro-Prolog query for finding the factorial of 4 is:

Which (x 4 has-factorial x)

This is read. “Which values of x are there such that the rela-
tion 4 has-factorial x is true?”

Such a query follows the same patfefr-as queries to databases
in micro-Prolog. Indeed, in Prolog, there-is no distinction be-
tween program and database. A program consists of statements
about relationships between individuals, which may be in the

form of facts or rules.

The Promise of Logic Programming
Given only this exposure to recursion in Lisp and micro-Pro-
log, one might prefer Pascal or even Basic. The syntax of Lisp
and micro-Prolog may appear unfamiliar, and some might even
find it initially difficult to conceptualize something like the fac-
tonal function in terms of rules. The syntactic objection might
be waved off by saying *‘one gets used to it,” but the conceptual
barrier warrants more explanation.
_ First. one must realize that neither Lisp nor Prolog was de-
signed for mathematical calculation. The reader is referred to
the texts listed at the end of this paper for a full discussion of

224

their design considerations. Second, if all one wants to do is an-
swer the question, “What is the factorial of n?,” the authors
agree that one might as well simply use a caiculator with the
appropriate function key.
But now the Proiog twist. We have seen that the factorial of
4 can be computed in Basic by using the statement:
LET X = FNF (4)
and in Pascal by:
x := factorial
and in Lisp by:
(setg x (ftactorial 4))
and finally in micro-Prolog by:
Which (x 4 has-tactorial x)
In the three procedural languages, one cannot use the func-
tions defined in this paper to find out what number 24 is the
factorial of. That is, one cannot write statements such as:
24 = FNF (x)
24 := factorial (x);
(setg 24 (factorial x)
Since the Prolog definition is based on logic, however, one
can theoretically use it to solve the problem by posing the
query:
Which (x x has-factorial 24)
This is the promise of logic programming: rule-based systems
comprehensively defined can be run backwards as well as for-
wards. Unfortunately, implementation constraints on present
machines restrict numerical applications at the present time.
The major problem is that the built-in micro-Prolog relations
LESS, SUM, and TIMES are not declarative. They are machine-
coded functions that perform their operations using standard
procedural techniques. If they were declarative, one should, in-
deed, be able to get an answer to the backwards question posed
above.
Interestingly enough, it is possible to write declarative ver-
sions of the LESS, SUM, and TIMES relations. The code for
accomplishing this is provided below.
We begin by declaring successor relationships:
is-the-successor-of 0
is-the-successor-of
is-the-successor-of
is-the-successor-of
is-the-successor-of
is-the-successor-of
Using these relationships, we can then declare the rules by
which one determines whether one number is less than another:
X is-less-than Y if
Y is-the-successor-of X
X is-less-than Y if
Z is-the-successor-of
Z is-less-than Y
The first rule handles cases where Y is one greater than X,
while the second rule uses recursion to handle all other cases.
Given these relationships, we can now define the "“sum” rela-
tion declaratively:
sum (0 0 0)
sum (0 X X) if
0 is-less-than X

sum (X 0 X) if
0 is-less-than X

sum (X Y Z) if
0 is-less-than X and
0 is-less-than Y and
X is-the-successor-of
sum (x Y y) and
Z is-the-successor of y :

The first rule says that the sum of 0 and O is 0. The second
rule says that the sum of O and X is X if O is less than X. The
third rule says that the sum of X and 0 is X if O is less than X.
The fourth rule says that the sum of X and Y is Z if O is less

(4):

DL O =
n e WN =

X and

X and

November 1983 ¢ Creative Computing

Logic and Recursion, continued...

than both X and Y, X is the successor of some number x, and

the “sum" relation is true such that x plus Y is y when Z is the

successor of y. In essence, the recursive call in the last rule

breaks down the problem of finding the sum of 2 and 3 as

follows:
2 + 3 (1t + 1) + 3

1 + (1 +0) + 3

= (1 +0) + (1 +0) + 3
= (1 +0) + (1 +0) + (2 + 1)
= (1 +0) + (1 +0) + 2+ (1 + 0)
= (1 +0) + (1 +0) + (1 + 1)
+ (1 + 0)
= (1 4+ 0) + (1 +0) + 1+ (1 + 0)
+ (1 + 0)
= (1 + 0) + (1 +0) + (1 + 0)
+ (1 +0) + (1 + 0)

and returns the answer 5 by finding the successor of the succes-
sor of the successor of 0! -
The “‘times” relation can be defined declaratively in terms of
the above “sum’ relation:
times (0 0 0)
times (0 X 0) it
0 is-less-than X
times (X 0 0) if
0 is-less-than X
times (X Y Z) it
0 is-less-than X and
0 is-less-than Y and
X is-the-successor-of x
times (x Y y) and
sum (Y y 2Z2)
Interpretation of this definition is similar to “sum.” We now
have fully declarative definitions of the *less,” *sum,” and

and

“times” relations. Note that these relations are written with
lowercase letters to distinguish them from the built-in relations.
A fully reversible micro-Prolog factorial function can then be
written by replacing the built-in functions with our declarative
versions:

X has-factorial 1 if

X is-less-than 1
X has-factorial Y if

0 is-less-than X and
X is-the-successor-of
Z has-factoriat x and
times (X x Y)

This definition now allows us not only to ask the forward

question:

Which (x 3 has-factorial x)
and achieve the answer 6, but also to ask the backward
question:

Which (x x has-factorial 6)
and achieve the answer 3.

As one might expect, the processing time needed to compute
either of these answers is very slow. If you try it yourself, we
recommend that you stick to the factorials of 0, 1, 2, and 3.
Computing the factorial of 4 requires declaration of successor
relationships up to 24 and takes several minutes to compute.

This performance problem, however, is partially due to the
sequential nature of the systems on which micro-Prolog is cur-
rently implemented. When parallel machines are commonplace
in the Fifth Generation, perhaps the promise of logic program-
ming will make the Prolog twist a valuable technique rather
than just an interesting exercise.

Z and

Further Reading

Clark, K.L., J.R. Ennals, and F.G. McCabe, 1982. 4 micro-
Prolog Primer. Logic Programming Associates, London,
England.

Clocksin, William F., and Christopher S. Mellish, 1981.
Programming in Prolog. Springer-Verlag, Berlin, Heidelberg,
New York.

Digital Equipment Corporation, 1982. VAX-11! Basic Language
Reference Manual. Digital Equipment Corporation, Maynard,
Massachusetts.

Ennals, Richard, 1983. Beginning micro-Prolog. Ellis Horwood,
Ltd., West Sussex, Engiand.

Jensen, Kathleen, and Niklaus Wirth, 1974. Pascal User Man-
ual and Report. Springer-Veriag, Berlin, Heidelberg, New
York.

Kowalski, R.A., 1979. Logic for Problem Solving. Elsevier
North Holland, Inc., New York. Amsterdam, Oxford.
Winston, Patrick Henry, and Berthold Klaus Horn. 1981.

Lisp. Addison-Wesley Publishing Company, Reading,
Massachusetts.

