ARTIFICIAL INTELLIGENCE APPLICATIONS TO
COMPUTER-ASSISTED INSTRUCTION

Project Progress Report No. 5:

ON PROGRAM CONVERSION FROM MACLISP TO VAX LISP

Jesse M. Heines, Ed.D.

Systems Based Courseware
Educational Services Development & Publishing

George Poonen

Productive Information Management, Inc.

December 29, 1983

NREEREEN
Idlilglilt|all]
L1l

Educational Services
Burlington, MA 01803

AI/CAI PROJECT PROGRESS REPORT NO. 5 page 2
Jesse M. Heines and George Poonen 29 Dec 83

1 ABSTRACT

This report documents our experiences in converting a program
from MacLISP on TOPS-20 to VAX LISP on VAX/VMS. It includes:

e a list of changes required to get the MacLISP code
running in VAX LISP, particularly with regard to data
types,

® a number of stylistic programming guidelines for people
writing MacLISP code that will eventually be converted to
VAX LISP,

® general comments comparing the two LISPs on such issues
as performance and facilities, and

e advice for new VAX LISP users on setting up an EMACS/LISP
programming environment on VAX/VMS.

The code that we converted 1is the prototype IReGIS program
described extensively in AI/CAI Project Progress Report No. 4.
The complete IReGIS course was designed to be an intelligent,
rule-based tutor on ReGIS. The IReGIS program that currently
exists represents one aspect of the complete course, the ReGIS
Laboratory described in Section 5.3 of AI/CAI Project Progress
Report No. 3. This program consists of approximately 85 LISP
functions each averaging about 25 lines of code.

The comments made in this report are based on our use of VAX LISP
Version X0.2-8 running on a VAX-11/780 with 4 MB, 3 RP06's, and
an average daytime load of 40 interactive users. Our two most
significant findings from this experience are that:

1. VAX LISP is an extremely rich implementation of the base
language, particularly with regard to data types and
interfaces to the operating system. It appears to be -
particularly valuable for rapid prototyping.

2. VAX LISP is large and slow, and therefore 1is not a
viable environment for delivering highly interactive
CAI-type software in production mode on heavily-loaded
systems such as ours.

AI/CAI PROJECT PROGRESS REPORT NO. 5
Jesse M. Heines and George PgQonen

2

1

L = -
. e e
W M =

v o n wn
. s e
wu B W N

fe o W e \ Mo) N
. s @
VYR S

~J

TABLE OF CONTENTS

ABS TRACT - - L L] . .

TABLE OF CONTENTS .+ « ¢ o« « o o & o o

INTRODUCTION « « ¢ « « s o o s o« o & &

CODE CHANGES FROM MACLISP TO VAX LISP

Required Changes« e o
Optional But Beneficial Changes .« .
Other Possible Changes . . . « . . .

STYLISTIC GUIDELINES « « + & o o s o o

A

Modular Decomposition of Functions .
Inclusion of Test Driver Functions .
DOCUMENEALION o o o + & ' % o & & e
Parentheses . .o o o s « = o s o o
Error Checking with the Compiler . .

GENERAL COMPARISON OF THE TWO LISPS

FunctionaliEy « o o ¢ & @ ¥ 8 W a s
Performance . . . v e s s s e »
The Special Case of Slngle Character
The VAX LISP CALL-OUT Facility . . .

TOPS-20-LIKE EMACS/LISP PROGRAMMING ENVIRONMENT FOR

VAX/VMS . . - - [. L] L]

FINAL REMARKS AND FUTURE PLANS

*® & = & =
. " 8 * @
= * = = =

Input

. 8 8 ® @

29

.- & 8 & @

page 3
Dec 83

11
11
1

- . - - -
- = & * =

12

13
13
14
16

- - 20

AI/CAI PROJECT PROGRESS REPORT NO. 5 page 4
Jesse M. Heines and George Poonen 29 Dec 83

3 INTRODUCTION

The purpose of this report is to document our experiences in con-
verting a program from MacLISP to a VAX LISP so that others may
perform the task more quickly and with less effort. While the
report does contain comments on the overall design and implemen-
tation of VAX LISP, it should not be construed as a critique of
either VAX LISP itself or the VAX LISP Development Group. First,
the version of VAX LISP we used was a preliminary, pre-field test
version, and newer versions will have significantly different
characteristics in some categories. Second, while we feel that
we learned a number of valuable lessons that are worth sharing,
we have converted only one program. We did not make exhaustive
benchmark-type studies of the differences between VAX LISP and
MacLISP, and we certainly did not make use of all the VAX LISP
facilities. We focused on functionality rather than efficiency,
and our purpose was merely to get the code up and running rather
than making it particularly elegant.

We did, of course, find some bugs during the conversion process,
and these have been reported directly to the development group
rather than documenting them here. We gratefully acknowledge the
help of Gary Brown and Jerry Boetje in analyzing our programming
problems to determine if the bugs found were 1in our code or
theirs. Indeed, the conversion would have been much more diffi-
cult without Jerry Boetje's help in using the CALL-OUT facility.

The code that we converted 1is the prototype 1IReGIS program
described extensively 1in AI/CAI Project Progress Report No. 4.
The complete IReGIS course was designed to be an intelligent,
rule-based tutor on ReGIS. The IReGIS program that currently
exists represents one aspect of the complete course, the ReGIS
Laboratory described in Section 5.3 of AI/CAI Project Progress
Report No. 3. This program consists of approximately 85 LISP
functions each averaging about 25 lines of code. This code was
converted from MacLISP running on a DECsystem-20 to VAX LISP
Version X0.2-8 running on a VAX-11/780.

The report includes the following major sections:

e changes required to get MacLISP code running in VAX LISP,
particularly with regard to data types,

e stylistic programming guidelines for MacLISP code that
will eventually be converted to VAX LISP,

® dJeneral comments comparing the two LISPs on such issues
as facilities and performance, and

e how to set up an EMACS/LISP programming environment for
VAX/VMS similar to that available on TOPS-20.

AI/CAI PROJECT PROGRESS REPORT NO. 5 page 5
Jesse M. Heines and George Poonen 29 Dec 83

4 CODE CHANGES FROM MACLISP TO VAX LISP

Code changes from MacLISP to VAX LISP that we ran into may be
classified into three categories: .

e changes required to get the code to run,

e changes not absolutely required, but highly beneficial
for enhancing code clarity and/or system performance, and

e changes useful for other reasons,

The changes discussed in the sections that follow should be
interpreted as representative of those needed for MacLISP to VAX
LISP conversions rather than as a comprehensive 1list of such
changes.

4.1 Required Changes
Required changes can be separated into four subcategories:
e the need to declare global variables,

e straight translations from a MacLISP function to a VAX
LISP function,

® minor transformations on MacLISP functions or syntax, and

e major transformations on MacLISP functions or syntax.

4.1.1 Need to Declare Global variables - The need for declara-
tions was one of two instances we found in which the functional-
ity of the-VAX LISP interpreter differred from that of the VAX
LISP compiler. (The other instance was a simple bug.)

NOTE

We have been informed by the VAX LISP Development
Group that beginning with version X0.4-0, the VAX
LISP interpreter and compiler will share the same
front end, thus eliminating all differences be-
tween the interpreter and the compiler.

In the Version X0.2-8 interpreter, unbound variables were simply
treated as global and can be referred to at any level. 1In the
Version X0.2-8 compiler, unbound variables that are not declared
using DEFVAR are flagged with warnings and sometimes cause fatal
compilation errors. Declaring all global variables via DEFVAR
eliminated this problem, and we therefore recommend that all
globals be declared simply as a matter of programming practice.

AI/CAI PROJECT PROGRESS REPORT NO. 5 page 6
Jesse M. Heines and George Poonen 29 Dec 83

4.1.2 Straight Translations - Some MacLISP functions and predi-
cates can be translated directly into VAX LISP equivalents. In
these cases, conversion is trivial. The translations we used
most often are shown in Table 1.

Table 1

REPRESENTATIVE STRAIGHT TRANSLATIONS
FROM MACLISP TO VAX LISP

MacLISP VAX LISP
4#\ ALTMODE --> #\ESCAPE
(ADD1 n) -=> (1+ n)
(SUB1 n) -=> (1= n)
(GREATERP X y) =-=> (> x vy)
(LESSP x y) -—-> (£ x vy)
(ASCII n) -=> (INT-CHAR n)
(READCH) -=> (READ-CHAR)
("G) --> Version X0.2-8:

(THROW 'TOP-LEVEL-CATCHER T)
Later Versions:
(THROW-TO-COMMAND-LEVEL :TOP)

—— i ————————————————————— i —————————————————————————

4.1.3 Minor Transformations - Some forms require minor transfor-
mations from MacLISP to VAX LISP. For example, the PROBEF func-
tion in MacLISP is PROBE-FILE in VAX LISP, and files specifica-
tions supplied as arguments to the MacLISP version are expressed
as lists, while those supplied to the VAX LISP version are
expressed as strings or atoms. In most cases, these minor trans-
formations are documented in the Common LISP Reference Manual by
Guy Steele.

4.1.4 Major Transformations - A small number of MacLISP forms
require major transformations for use in VAX LISP. Most of these
forms involve the MacLISP STATUS function, which does not exist
in VAX LISP. For example, the MacLISP function:

(STATUS DATE)
must be expressed in VAX LISP as:

(DEFUN CURRENT-DAY ()
(MULTIPLE-VALUE-BIND (A B CDE F) (LISTDEF)))

AI/CAI PROJECT PROGRESS REPORT NO. 5 page 7
Jesse M. Heines and George Poonen 29 Dec 83

Likewise, the MacLISP function:
(STATUS DAYTIME)
must be expressed in VAX LISP as:

(DEFUN CURRENT-TIME ()
(MULTIPLE-VALUE-BIND (A B C) (LIST C B A)))

A far more complex transformation is required for the MacLISP
function:

(SSTATUS LINMODE NIL)

This function essentially puts the terminal into single character
input mode so that the MacLISP READCH function returns a char-
acter as soon as one is typed, rather than waiting for the user
to press RETURN. There is simply no equivalent function in VAX
LISP. We use single character input for all user entries in our
courseware so that the keypad keys, which are defined to perform
special functions such as help, replot the screen, and exit, are
active at all times. For example, pressing the PF2 key causes:
help to be displayed without waiting for the student to press
RETURN. Implementation of single character input in VAX LISP
requires putting the terminal into passall mode and this has
several side effects., Section 6.3 of this report describes our
single character input routine in detail.

*
4.2 Optional But Beneficial Changes

We made a number of changes to the 1IReGIS code that were not
absolutely necessary, but that proved to be beneficial for
clarifying the code or improving system performance. These
changes are described below.

4.2.1 Data Types - One of the distinguishing and most pleasing
features of VAX LISP is the richness and structure of its data
types. Because of the paucity of data types in MacLISP, some
objects had to be mapped unnaturally into lists. 1In VAX LISP,
these objects could often be more easily be handled as strings,
sets, or, more generically, as sequences, We also found it
relatively easy to coerce one data type into another data type
where appropriate. This permitted easier conversion where multi-
ple data types were expected by the MacLISP functions already
defined.

In the MacLISP version of our course, all student input is repre-
sented as lists of characters. 1In the VAX LISP version, it is
represented as strings. This data type conversion has several
advantages:

AI/CAI PROJECT PROGRESS REPORT NO. 5 . page 8
Jesse M. Heines and George Poonen 29 Dec 83

® Code Clarity: "Student Name" is considerably easier to
work with than (S /t /u /d /e /n /t | | N /a /m Je).

e System Performance: A very large number of IMPLODEs and
EXPLODEs were completely eliminated.

e Algorithm Simplification: String comparisons, editing,
and case conversions could be done more easily with the
built-in VAX LISP functions STRING=, STRING~, STRING-
TRIM, STRING-EQUAL, etc. We also used a large number of
the VAX LISP SEQUENCE functions such as SEARCH, POSITION,
and REMOVE-IF to perform wuseful operations on strings
that we had had to program ourselves in MacLISP.

Since the subject matter of our course is ReGIS, the wuse of
strings also cleared up a number of instances in which we had to
worry about macro characters such as comma. In MacLISP, a ReGIS
string address had to be expressed as '[123/,456], while in VAX
LISP it could be expressed as "[123,456]" with no special
consideration for the comma.

4.2.2 &OPTIONAL Function Parameters - The &OPTIONAL qualifier
for function parameters proved to be very useful because it
allowed the number of arguments in a function call to be
different from the number in that function's definition. This
allowed us to change a function's definition slightly by, for
example, adding, a new parameter to improve performance, without
having to change all of the calls to the function. Use of the
&OPTIONAL qualifier thus saved a considerable amount of debug-

ging.

4.2.3 &REST Function Parameters - The &REST qualifier paid simi-
lar dividends. A number of our MacLISP functions expected asso-
ciation lists as arguments and then parsed these with the ASSOC
function to extract relevant values. The parsing process could
be totally eliminated in VAX LISP by using the &KEY parameter
qualifier, but this qualifier was not yet implemented in Version
X0.2-8 for user-written functions [1]. We therefore retained our
use of association 1lists, but we preceded the single function
argument with &REST. This allowed us to pass values to the
function as quoted pairs such as '(ANSWER-AT "[0,460]") '(CHAR-
LIMIT 15) rather than having to put all of these pairs into a
list. -

[1] From a performance point of view, Gary Brown feels that any
coding efficiency gained by the use of &KEY in this manner
would probably be offset by the system overhead that it
requires.

AI/CAI PROJECT PROGRESS REPORT NO. 5 page 9
Jesse M. Heines and George Poonen 29 Dec 83

4.2.4 SETF vs. SETQ - Access and updates of variables are done
in a much more uniform way in VAX LISP than they are in MacLISP.
The VAX LISP function for updating variables 1is SETF, and
essentially eliminates the need for for SETQ, SET and RPLACA.
The form of simultaneous array access and update in VAX LISP is:

(SETF (AREF ARRAY SUBSCRIPTS) NEWVALUE)

4,2.5 Built-In Functions on Sets - As stated earlier, VAX LISP
contains a much richer set of built-in functions than MacLISP,
and we were able to replace some of the functions we wrote
ourselves in MacLISP with built-in VAX LISP functions. The most
notable area in this regard dealt with functions on sets such as
SUBSETP. In MacLISP we wrote our own function, while in VAX LISP
we used the built-in one.

VAX LISP also provides a rich set of built-in functions that
operate on SEQUENCEs, 1i.e., lists and vectors (the string data
type is a simple vector). As mentioned in Section 4.2.1 above,
we used a number of these functions to manipulate strings.

4.2.6 Documentation Strings - Last but certainly not least, 1is
the availability of VAX LISP documentation strings. These are
simply strings added after a function's formal parameter section
which can contain any desired text. This text can then be
printed on the terminal using the DESCRIBE function in the LISP
interpreter.

It is surely unnecessary for us to preach the values of documen-
tation 1in this document, but one or two points are in order.
First, this project involved two programmers -- Jesse and George
-- converting code written solely by one of the two (Jesse).
George did the first pass on most of the code, getting each
program module at least to the point that it would load and run
under VAX LISP. He tested each function as best he could in
isolation from the overall course. After George converted a
module, Jesse attempted to integrate it with modules that were
already converted and tested.

Jesse was understandably much more familiar with what each
function was supposed to do than George was, and George sometimes
inadvertently changed a basic characteristic of a function during
the conversion. The easiest way for Jesse to find these
instances was via the documentation strings. He could test out
the integrated functions in the interpreter, and if things didn't
work as expected he checked what George had done by 1looking at
the documentation string. Thus documentation strings provided a
simple and effective method for recording what each programmer
did that was accessible from the interpreter. (Note that GRINDEF
does not print out comments.)

AI/CAI PROJECT PROGRESS REPORT NO. 5 page 10
Jesse M. Heines and George Poonen 29 Dec 83

4.3 Other Possible Changes

Our conversion effort focused on functionality rather than effi-
ciency. If we were to recode IReGIS in VAX LISP completely from
scratch, we would of course have coded some things differently
from the way 1in which they coded in MacLISP. The changes that
follow were not made, but are worth noting for future projects.

4.3.1 STRUCTURE Data Type - Some of the objects in the IREGIS
course could have been modelled as structures using DEFSTRUCT.
This would have involved substantial changes to existing pro=-
grams, and we chose not to change the underlying program archi-
tecture. We believe that STRUCTURE data types may provide signi-
ficant enhancement for this type of program in future implementa-
tions.

4.3.2 Packages - The Common LISP Reference Manual describes a
PACKAGE facility which was not implemented in Version X0.2-8 but
which could further enhance modular decomposition of functions.
We did not use this facility, but we believe that it may be worth
using it for future development to enhance code readability and
maintainability.

AI/CAI PROJECT PROGRESS REPORT NO. 5 page 11
Jesse M. Heines and George Poonen 29 Dec 83

5 STYLISTIC GUIDELINES

George reports that this was his first attempt at converting code
written by someone else to a different language/dialect. He
found many of the programming and documentation standards used in
the existing program to be valuable, particulary those discussed
below.

5.1 Modular Decomposition of Functions

The IReGIS code resides in nine separate files, each containing
about a dozen functions averaging about 25 lines of LISP code.
Extensive use 1is made of recursive auxiliary functions ==
functions that do the actual work after being called by higher
level functions that set them up (see, for example, the program
on page 164 of LISP by Winston & Horn). Small, one-task func-
tions were much easier for us to convert than larger, multi-task
functions.

As stated earlier, VAX LISP provides a package facility which
could further enhance this aspect of program development. We did
not use this facility, but hope to do so in the future.

5.2 Inclusion of Test Driver Functions

Many of the program modules contain test driver functions that
can be wused to test the functionality of other functions within
the module. These functions are not called when the course |is
actually run, but are very useful during debugging. The inclus-
ion of these test functions was particularly useful in our case
because all of the program I/O is done in ReGIS mode. Once the
terminal is put into this mode, error messages do not get dis-
played because the characters in the messages are interpreted by
the firmware as ReGIS command strings. The test driver functions
allowed 1individual functions to be tested in non-ReGIS mode so
that their interactions and possible error messages could be
monitored.

5.3 Documentation

From a program conversion point of view, comments associated with
each LISP statement were 1less useful than overall function
documentation, except when the code was particularly abstruse.
Most comments were on the processing aspects of the code, but it
would have been helpful to have more detailed descriptions of
each function's input and output behavior. Examples were pro-
vided for some of the more complex functions, and these proved to
be particularly useful. Inclusion of additional examples would
have been useful.

AI/CAI PROJECT PROGRESS REPORT NO. 5 page 12
Jesse M. Heines and George Poonen 29 Dec 83

5.4 Parentheses

As in all LISPs, parenthesis syntax is a annoyance, and it often
takes nothing 1less than black magic to correct unbalanced
parentheses errors. Using LISP mode in EMACS certainly helps,
but can still be a problem when the DEFUN statement containing
the first parenthesis scrolls off the screen or comment lines
confuse automatic EMACS indentation. Some well thought out tools
are needed to address this problem, and the VAX LISP Development
Group is 1indeed working on an integrated VAX LISP Editor which
promises to just that. There 1is 1little else we can say
stylistically at the present time, except to note that unbalanced
parentheses are the major cause of LISP LOAD errors when the
reader informs you that it hit an unexpected end of file.

5.5 Error Checking with the Compiler

We found that the compiler does considerably more error checking
than the interpreter. The more extensive error checking of the
compiler proved to be extremely helpful in avoiding run-time bugs
of a somewhat esoteric nature. We therefore recommend that all
VAX LISP code be run through the compiler for a quick syntax
check prior to attempting run-time debugging.

AI/CAI PROJECT PROGRESS REPORT NO. 5 page 13
Jesse M. Heines and George Poonen 29 Dec 83

6 A GENERAL COMPARISON OF THE TWO LISPS

The discussion thus far has made many comments comparing MacLISP
and VAX LISP details, The comments in this section are more
general in nature, but they should not be construed as an exhaus-
tive review of both LISP dialects. Our purpose in presenting
this information is simply to provide information for other
programmers who may undertake conversion tasks similar to ours.

6.1 Functionality

The functionality of VAX LISP is superior to that of DECsystem-20
MacLISP in almost every regard. The preceding sections have
pointed out a number of instances which demonstrate increased
functionality, and there is little more we can add here. Suffice
it to say that if you can do it in MacLISP, you can surely do it
in VAX LISP, and perhaps with greater simplicity. One notable
exception is single <character input, which 1is discussed in
Section 6.3 of this report.

6.2 Performance

Performance is a different story. We are currently running
Version X0.2-8 of VAX LISP on a VAX-11/780 with 4 MB memory, 3
RP06's, and an average daytime load of 40 interactive users (not
counting system jobs). This is a relatively heavy load by any
measure. Now, there is some question as to whether any LISP with
the richness of VAX LISP could run on such a heavily loaded
system with reasonable response time. Leaving that Gquestion
aside, one must be prepared to pay a significant performance
price to use VAX LISP, particularly on heavily loaded systems.

We have performed a number of timed tests to get a handle on VAX
LISP's speed, but we have since found that most of the results of
these tests could be altered dramatically by adjusting system and
process parameters. For example, we wrote a function that anal-
yzed a directed graph of 50 nodes to create two 50-element arrays
specifying all of the predecessors and successors of each node
(see AI/CAI Project Progress Report No. 3 for a discussion of
this structure). Running this function with a working set limit
of 500 and using the default LISP memory allocation of 10000
pages required over 29 minutes of CPU time (including about a
dozen garbage collections), but changing the working set 1limit
from 500 to 1500 and running LISP with a memory allocation of
13000 pages reduced this to less than 2 minutes of CPU time
without any garbage collections.

Suffice it to say that VAX LISP performance is highly dependent
on specific system configurations and parameters, particularly
memory and load. The VAX LISP Development Group assures us that

AI/CAI PROJECT PROGRESS REPORT NO. 5 page 14
Jesse M, Heines and George Poonen 29 Dec 83

pending documentation will include detailed information and
suggested parameter settings to help users optimize LISP perfor=-
mance on their systems.

¢

6.3 The Special Case of Single Character Input

We use single character input for all user entries in our soft-
ware because we want the keypad keys to be active at all times.
Our CAI courses define the keypad keys to perform special func-
tions such as:

e display a HELP message for the CAI program in general
(the PF2 key),

e EXIT the course (the PF3 key),

e display ADVICE on the current subject matter context (the
keypad "0" key), and

® REPLOT the screen (the keypad "." key).

We want the program to respond immediately to these keys, so we
can not use VAX LISP's standard READ-CHAR or READ-LINE functions,
because these require the student to press RETURN before any
input is actually processed.

Our approach to this problem in MacLISP was to put the terminal
into single character input mode with the standard MacLISP
function:

(SSTATUS LINMODE NIL)

Once this statement is executed, the MacLISP function READCH
returns a character as soon as one is typed rather than waiting
for the user to press RETURN. We also enveloped the READCH
function call with DO-WITH-TTY-OFF, a standard MacLISP package
that inhibits character echoing. We then wrote our input input
handler to echo desired characters, process the DELETE key and
CTRL/U correctly, and read escape sequences when one of the
keypad. Kkeys was pressed. This was a sizable job, but the result
was a very clean routine to get student input with the keypad
keys active.

Since VAX LISP does not contain STATUS and SSTATUS commands,
converting this routine required a large number of changes. Our
basic approach was to put the terminal into PASSALL and NOECHO
modes with the SET-TERMINAL-MODES statement:

(SET-TERMINAL-MODES TTY-STREAM :PASSALL T :ECHO NIL)

The VAX LISP READ-CHAR function then returned a character as soon
as one was typed. The main problem with using this approach

AI/CAI PROJECT PROGRESS REPORT NO. 5 page 15
Jesse M. Heines and George Poonen 29 Dec 83

occurred during debugging’. UNWIND-PROTECT was not present in
Version X0.2=-8, so each time an error occurred the terminal
remained in PASSALL and NOECHO modes. We finally wrote a RESET
function to reset the terminal and typed this "blind" in response
to the breakpoint so that we could interact with LISP normally.
once the program was fully debugged, the VAX LISP approach worked
as well as the MacLISP one.

Gary Brown has informed us that UNWIND-PROTECT will certainly be
present in the first released version of VAX LISP, but has also
advised us that SET-TERMINAL-MODES should be wrapped in an error
handler as well as UNWIND-PROTECT. with this approach, he
suggests preceding a call to SET-TERMINAL-MODES with a call to
GET-TERMINAL-MODES to save the current terminal settings. When
an error occurs, the error handler should reset the terminal to
the save settings and then call the debugger via BREAK. Using
UNWIND-PROTECT and error handlers in conjunction in this manner
would appear to provide maximum control in this situation.

There seem to be at least three better approaches to our problem
than putting the terminal in PASSALL and NOECHO modes. The first
of these is already in VAX LISP: the ability to define the ESCape
key as an AST. Since all of the character sequences transmitted
by the keypad (and arrow) keys begin with an ESCape character, we
could have used regular input processing with either the READ-
CHAR or READ-LINE commands and made the ESCape character cause an
immediate jump (via an AST) to a special routine for handling
these keys. We should investigate this possibility for future
courseware.

The second possible approach would require the implementation of
a new statement by the VAX LISP Development Group, something akin
to READ-CHAR-HANG. VAX LISP already has a READ-CHAR-NO-HANG
statement which 1is "exactly 1like READ-CHAR except that if it
would be necessary to wait in order to get a character, NIL is
immediately returned without waiting" (see the Common LISP Refer-
ence Manual). From a purely functional point of view, READ-CHAR-
NO-HANG would give wus the functionality we desire simply by
creating a loop which called this function until a non-NIL value
was returned. Given LISP's performance, however, we consider
this an untenable approach.

The third possible approach would also require implementation of
a new statement, something akin to BIND-TO-KEY function that is
available in EMACS' customization language,- MLISP. This function
allows any sequence of characters to be bound to a function name,
causing that function to be evaluated whenever the matching
sequence of characters 1is detected in the input stream. For
example, the four arrow keys can be made to perform functions
analogous to those in EDT with the following statements:

(bind-to-key "previous-line" "\e[A") ; up
(bind-to-key "next-line" "\e[B") : down

AI/CAI PROJECT PROGRESS REPORT NO. 5 page 16
Jesse M. Heines and George Poonen _ 29 Dec 83

(bind-to-key "forward-character" "\e[C") :
(bind-to-key "backward-character" "\e[D") ; left

Gary Brown has informed us that we could implement this function-
ality ourselves using FUNCALL, so we intend to investigate the
feasibility of this approach for our next AI/CAI software imple-
mentation.

6.4 The VAX LISP CALL-OUT Facility

The most important difference between MacLISP and VAX LISP from a
functionality point of view is the ability to "call out" of VAX
LISP to routines written in other VAX/VMS native mode languages.
We used this capability to read an RMS indexed file that con-
tained all of the ReGIS code for generating the IReGIS course
screen displays. For those unfamiliar with this facility, the
basic concept is to create a shareable library of executable code
(.EXE format) that can be called from VAX LISP., We first tried
to write the RMS interface in VAX BASIC, but it turns out that
the VAX BASIC compiler contains an obscure bug that prohibits VAX
LISP from accessing the shareable library correctly. We there-
fore rewrote the RMS interface in Fortran, and everything worked
perfectly.

As described in AI/CAI Project Progress Report No. 3, the skill
hierarchy for 1IReGIS contained 50 nodes. We expect the skill
hierarchy for our next subject matter (GKS graphics on the
VAXstation) to contain several hundred nodes. Given VAX LISP's
performance, we are considering a variety of database techniques
for dealing with this volume of data. Some of these techniques
might best be programmed in PASCAL or other VAX native mode
languages to gain speed, but we still have the problem of
returning data to LISP. At present, only integers can be
returned to LISP from a CALL-OUT. It would be nice to be able to
call out to PROLOG, but that doesn't appear to be in the cards
for a 1long time to come. (We recently obtained a copy of the
LOGLISP functions from the University of Syracuse and need to
evaluate their applicability to our work.) 1In any event, we are
sure that the CALL-OUT facility will be crucial for making the
performance our future courseware viable.

AI/CAI PROJECT PROGRESS REPORT NO. 5 page 17
Jesse M. Heines and George Poonen 29 Dec 83

7 A TOPS-20-LIKE EMACS/LISP PROGRAMMING ENVIRONMENT FOR VAX/VMS

The implementation of VAX LISP as an incremental compiler makes
it an extremely powerful tool for rapid program development.
What was missing in Version X0.2-8 was an effective program
editor. The VAX LISP Development Group is working on a tailored
LISP editor to be integrated with LISP's interactive programming
environment, but this new editor had not yet been implemented for
Version X0.2-8. The environment described here will be obsolete
when the integrated LISP editor 1is available, but a general
discussion of its characteristics is still relevant with regards
to effective programming environments.

To get around this shortcoming, we emulated the TOPS-20 EMACS/-
LISP programming environment by running both LISP and EMACS in
subprocesses and using a pair of interfacing programs written by
Hal Shubin of DEC's AI Technology Center. This environment is
shown schematically in Figure 1. Two subprocesses exist below
the top 1level DCL process, one running EMACS and the other
running VAX LISP, and we go back and forth between these as
follows:

e From the top level DCL process, typing EMACS attaches to

ESC+CTRL/Z = save defun
GOLD+GOLD+ESC+CTRL/Z = save region

EMACS.
| |
| |
| |
| | | |
| | Top Level DCL Process |]
] | | |
I) T !
$ EMACS		°C S L		(0)
Yy	Y			
			I	
	EMACS Subprocess	dmmmmm e	LISP Subprocess] J	
!				
I				

Figure 1

LISP/EMACS ENVIRONMENT AND INTERFACES

AI/CAI PROJECT PROGRESS REPORT NO. 5 page 18
Jesse M. Heines and George Poonen 29 Dec 83

e From EMACS, typing CTRL/C executes a function (bound via
the BIND-TO-KEY construction described earlier) that
writes out all modified buffers, pauses EMACS,. and
returns to the top level DCL process.

e From the top level DCL process, typing L attaches to the
subprocess running LISP.

e From LISP, typing (0O) returns to the top 1level DCL
process, or typing CTRL/E attaches directly to EMACS.

Hal Shubin has written two complementary programs that make this
interface even more effective. The first is an EMACS MLISP
program and makes it easy to save parts of a VAX LISP program
that 1is being edited in a file called TOLISP.LSP in your
SYSSLOGIN directory. Typing ESC+CTRL/Z saves the function indi-
cated by your current cursor position. Prefixing this command
with a non-zero argument saves the region defined by the "mark"
and your current cursor position. (A default argument is
typically indicated by typing CTRL/U, but this key combination is
bound to the function EDT-ERASE-TO-BEGINNING-OF-LINE in our EDT
simulator. We have therefore defined two presses of the GOLD
(PFl) key to indicate a prefix argument.)

Shubin's second program is a VAX LISP program that defines CTRL/E
as an AST that attaches to EMACS. (Before doing the actual
attach, Shubin's program also does some nice cleaning up so that
CTRL/G and CTRL/Y work correctly in the EMACS subprocess.) When
the user returns to LISP after exiting via CTRL/E, this program
automatically reads SYSSLOGIN:TOLISP.LSP if it is present,

Thus one can easily go from LISP into EMACS, save a function or
region, pause EMACS, and automatically load the save code upon
returning to LISP. (If EMACS had a ATTACH function, the need to
return to the top level DCL process intermittently while return-
ing to LISP could be eliminated.) We found this interface to be
a godsend, as it allowed us to work much faster than would have
been possible if we had to reload entire files each time a
correction was made. This interface may become obsolete once the
integrated VAX LISP editor is available, but we highly recommend
it until it is.

Our general pattern for working with LISP and EMACS therefore
looks as follows:

1. Spawn a new EMACS via KEPTEMACS.COM and load Shubin's
TOLISP20.ML program.

2. Create or edit a LISP program.

3. Type CTRL/C to write out the modified buffers, pause
EMACS, and return the top level DCL process.

AI/CAI PROJECT PROGRESS REPORT NO. 5 ' page 19

Jesse M. Heines and George Poonen 29 Dec 83

4. Spawn a subprocess and run LISP in that subprocess.

5. Load Shubin's TOEMACS20.FAS file.and the program just
modified via EMACS.

6. Test the modified program.

7. Type CTRL/E to return directly to EMACS from LISP.

8. Edit the program.

9. Use ESC+CTRL/Z and/or GOLD+GOLD+ESC+CTRL/Z to save the
modified function or region in SYSSLOGIN:TOLISP.LSP.

10. Type CTRL/C to write out the modified buffers, pause
EMACS, and return the top level DCL process.

11. Type L to attach to the LISP subprocess. File
SYSSLOGIN:TOLISP.LSP will be loaded automatically.

12. Loop back to Step 6.

AI/CAI PROJECT PROGRESS REPORT NO. 5 page 20
Jesse M. Heines and George Poonen 29 Dec 83

8 FINAL REMARKS AND FUTURE PLANS

All-in-all, we were generally pleased with VAX LISP and the
quality of the compiler. Using VAX LISP is clearly a very
effective way of doing rapid prototyping. The speed with which
we could go through the design, edit, and test cycle clearly
makes for improved productivity. Whether particular products can
be built wusing VAX LISP 1is an issue that still needs to be
evaluated.

With the completion of the IReGIS conversion, we are now ready to
move into designing a new AI/CAI course. This course will be
designed to run on the VAXstation, and our current plan for
subject matter is the newly emerging Graphics Kernal Standard,
GKS. We are just beginning to look at this subject matter and
hope to have a design spec similar to AI/CAI Project Progress
Report No. 3 available by January. We welcome input from DEC's
graphics as well as AI communities on the design and implementa-
tion of this course.

AI/CAI PROJECT PROGRESS REPORTS IN THIS SERIES

These reports are available from Jesse Heines, Educational Ser-
vices Development and Publishing, Burlington FPO/A2, DTN 283-
7634, Engineering Net CLOSUS::HEINES.

These AI/CAI reports are intended for Digital internal distribu-
tion only. Special versions of Reports 1 and 3 exist that have
been approved for external distribution, If you intend to
redistribute these reports to non-Digital personnel, please
request the appropriate external versions.

1. Basic Concepts in Knowledge-Based Systems. April 20, 1982.

External Basic Concepts in Knowledge-Based Systems, pub-

version: lished in Machine-Mediated Learning, 1(1):65-95,
Spring 1983. Available as Educational Services
Technical Report No. 13.

2. Where AI Can Fit in CAI. November 4, 1982.

3. The Design of a Prototype AI/CAI Course Employing a Rule-
Based Tutorial Strategy. (Coauthored with Tim O'Shea of The
Open University, Milton Keynes, England.) May 3, 1983.

External The Design of a Prototype AI/CAI Course Employing

Version: a Rule~Based Tutorial Strategy. (Coauthored with
Tim O'Shea.) Available as Educational Services
Technical Report No. 14.

4., An Initial Attempt at Building a Student Model Using Produc-
tion Rules. June 2, 1983.

5. On Program Conversion from MacLISP to Common LISP. {Coau-
thored with George Poonen of Productive Information Manage-
ment, Inc.) December 29, 1983.

Readers involved with AI languages may also be interested in
"Logic and Recursion: The PROLOG Twist," coauthored with Jonathan
Briggs and Richard Ennals of 1Imperial College, London (May,
1982). This paper was published in the November, 1983, issue of
Creative Computing and is available as Educational Services
Technical Report No. 15.

