

This Technical Report may be copied
for non-commercial purposes with
credit to the authors and Digital
Equipment Corporation.

LOGIC AND RECURSION: THE PROLOG TWIST

Jesse M. Heines, Jonathan Briggs,
and Richard Ennals

ABSTRACT

This paper illustrates recursion across four languages: BASIC;
pascal, LISP, and micro-PROLOG. It describes a traditional
programming problem (computing the factorial of a number) and
compares how this problem is dealt with in each language. The
purpose of the paper is to provide insight into the different
properties of these languages. A recursive function is presented
in each language to solve the problem, "What is the factorial of
4?" The PROLOG twist occurs when we demonstrate that only in
micro-PROLOG can the same identical function be used to solve the
problem, "24 is the factorial of what?"

Jesse M. Heines is with Digital Equipment Corporation in Burling
ton, Massachussetts. Jonathan Briggs and Richard Ennals are with
Imperial College at the university of London, England. This
paper was published in the November, 1983, issue of Creative
Computing.

Digital Educational Services
Technical Report No. 15

INTRODUCTION

page 1

i
r

I

Britain's young Prince William has been born into a famous
family. As he grows up he will become aware of his distinguished
ancestry, linking him with several centuries of British monarchs
through both his father and his mother. According to current
reports, the popular Prince still appears to lack the physical
and intellectual power to carry out an exhaustive search for his
forebears himself. However, he may already know enough to
initiate a computer-aided search: he knows his immediate ances
tors, his parents, as well as the next level, the parents of his
parents.

Given the names of William's father and mother, a database of
names connected by parent-child relationships, and an effective
search strategy, one should be able to write a relatively simple
program to list his geneology. The key to the programming task
is that the problem is recursive: for each level of ancestors,
the next level can be determined by searching for the ancestors
of those ancestors, and so on until no additional ancestors c~n

be found. A recursive problem is one that can be broken down
into two or more subproblems, at least one of which is the same
as the original problem with a different s~t of conditions or
argurnen ts.

This paper approaches the issue of recursion by describing a
traditional programming problem and comparing how it is dealt
wi th in four languages: BASIC, Pascal, LISP, and micro-PROLOG.
It is a programming exercise and does not purport to be an
exhaustive discussion of recursion or the recursive properties of
the four languages. No claims are made that recursion is a
"good" programming technique, and we do not discuss its relative
strengths and weaknesses as compared to other techniques such as
iteration. Our purpose is simply to present an interesting
illustration of recursion across four languages to provide
insight into the subtle properties of each language.

THE FACTORIAL FUNCTION

We will use the factorial function to illustrate recursion
throughout this paper, as it is one of the most classic examples
of recursive programming. The factorial of any positive integer
n is the product of all positive integers from 1 to n, and is
represented by the symbol n! By definition, the factorial of 0
is 1. Therefore:

0! = 1
l! = 1
2! = 2 x 1 = 2

Digital Educational Services
Technical Report No. 15

31 = 3 x 2 x 1 = 6
41 = 4 x 3 x 2 x 1 = 24

Before proceeding to coding in a particular language,
help if we can develop a formal specification of the
function. This can be done using a logical notation,
with the definition given above:

[1] 10 has factorial 1

page 2

it will
factorial
starting

The factorial of a
integer and the
successor:

positive
factorial

integer
of the

is the product of that
integer to which it is the

[2] u has factorial v if 10 < u and
u is-the successor of
w has factorial x and
x times u = v

wand

The successor relationship is specified as:

[3] u is the successor of w if w + 1 = u

In traditional computing terms, the simplest
factorial problem is via iteration. This can
the following BASIC program, using a FOR/NEXT
the iteration.

way to solve the
be illustrated with
loop to accomplish

110 INPUT N

210 LET ANSWER = 1

310 IF N=IO THEN 710

410 FOR K=N TO 1 STEP -1
510 LET ANSWER = ANSWER * K

610 NEXT K

710 PRINT ANSWER

99 END

En ter the 'number whose fac
torial is to be computed.

Initialize the ANSWER to 1.

Handle the special 10 case.

Begin looping from N to 1.
Multiply the ANSWER by the

loop index.
Iterate over the next index.

Print the answer.

Stop.

A flowchart for the iterative solution is shown in Figure 1.
This program certainly does the job, but it is not a very clear
representation of the factorial function in terms of the formal
function specification given above. This lack of clarity is not
not due to the fact that the program is written in BASIC, as will
be seen in the next section. It is because the solution uses
iteration.

Recursion mayor may not be more computer efficient, and it may
or may not be easier to program. These issues are beyond the

Digital Educational Services
Technical Report No. 15

page 3

Enter the nUMber whose fac
torial is to be COMpUted.

Set the current answer to 1;

YES

Set. the loop index to the nUMber
whose factorial is to be COMputed.

Set the current answer to
itself tir4eS the loop index.

Figure .1

FLOWCHART OF AN INTERACTIVE FACTORIAL FUNCTION

YES

Answer is N tiMeS the
fitCtorial of N-1

I
Figure 2

FLOWCHART OF ARECURSIVE FACTORIAL FUNCTION

Digital Educational Services
Technical Report No. 15

page 4

scope of this paper. However,· as shown by the flowchart in
Figure 2, recursion allows one to code the factorial function is
a manner that is a much clearer representation of the formal
function specification. The sections that follow illustrate how
the recursive solution in programmed tn four different languages.

A BASIC IMPLEMENTATION

Not all languages allow recursion, but this is really more a
property of the language implementation than the language design.
As stated earlier, a detailed technical discussion of the
language implementation requirements for recursion is beyond the
scope of this paper. But even BASIC, that most maligned of
computer languages, allows recursion in some implementations.
Just to demonstrate that it can be done, following is the code
for a recursive implementation of the factorial function written
in Digital Equipment Corporation's BASIC+2:

l~ DEF FNF(X)

20 IF X=0 THEN LET FNF=l
30 IF X<>0 THEN LET FNF=X*FNF(X-l)

40 FNEND

Begin the function
definition.

Handle the 0 case.
! Handle all other

cases.
End the function

definition.

When the symbol FNF is used alone on the left side of the = sign
in lines 20 and 30, it represents the result that the function
returns. When FNF(X-1) is used on the right side of the = sign
in line 30, it represents a recursive call to function FNF with a
new argument (the or ig inal argument minus 1). The funct ion is
initially called with a statement such as:

100 LET F = FNF(4)

This function can be made more readable and efficient by using
other advanced features of BASIC+2, but we needn't proselytize
further here.

A PASCAL IMPLEMENTATION

While recursion may be somewhat foreign to BASIC programmers, it
should be more familiar to Pascal programmers. Following is the
code for a recursive Pascal definition of this function:

Digital Educational Services
Technical Report No. 15

page 5

functi.on factorial (x:integer) integer;
{ declare the start of an

integer function with
one integer argument }

begin

if x=0 then factorial := 1

{ begin definition block}

{ handle the 0 case }

else factorial. := x * factorial (x-I);
{ recurse using the ori

ginal argument minus 1 }

{ end definition block}

As in the BASIC implementation, when the symbol factorial is used
alone on the left side of the := sign it represents the result
that the function returns. When it is used on the right side of
the := sign within its own function definition, it represents a
recursive function call. A Pascal statement for calling this
function would have the form:

f := factorial(4);

A LISP IMPLEMENTATION

with the recursion concept firmly in mind, we are now ready to go
a bit further by looking at two interesting languages that are
often used for logic and' artificial intelligence applications.
The first is LISP:

(defun factorial (x)

(cond

((equa 1 x 0) 1)

.begin the function definition

begin a conditional block

if the "equal" relation IS

true when x is compared to 0,
return 1

(t (times x (factorial (difference xl))))))
in all other cases, return
the product of x and the
factorial of the difference

; between x and 1

This code may be difficult to follow for those readers who are
not used to "prefix" notation, but this should be only a minor
stumbling block. Prefix notation puts the operation first,
followed by the two arguments. Thus, (equal x 0) means "if x
equal s 0," and (d i fference xl) means "x mi nus 1." The comment

Digital Educational Services
Technical Report No. 15

page 6

1

following the last line of the code translates the recursive call
into English. A LISP statement to call this function equivalent
to the two previous illustrations would look as follows:

(setq f (factorial 4»

which sets variable f to the value returned by the function call
(factorial 4).

One of our reasons for showing the LISP implementation is that it
is relatively easy to trace LISP functions to demonstrate the
recursive calling sequence. A trace of the above call to compute
the factorial of 4 is shown below. The first number in each line
is the recursion level. The number in parentheses at the end of
each ENTER FACTORIAL messages is the argument with which the
function is called. The number at the end of each EXIT FACTORIAL
messages is the result returned by that recursion level.

(1 ENTER FACTORIAL (4»
(2 ENTER FACTORIAL (3»

(3 ENTER FACTORIAL (2»
(4 ENTER FACTORIAL (1»

(5 ENTER FACTORIAL (0»
(5 EXIT FACTORIAL 1)

(4 EXIT FACTORIAL 1)
(3 EXIT FACTORIAL 2)

(2 EXIT FACTORIAL 6)
(1 EXIT FACTORIAL 24)

A MICRO-PROLOG IMPLEMENTATION

PROLOG is a different kind of language from the three already
discussed. Although there have been a variety of implementations
since 1972, PROLOG has received considerable attention in recent
months, partly due to its adoption by the Japanese as the
starting point for their Fifth Generation machines, which are to
be based on logic programming. The difference between PROLOG and
the other three languages is that PROLOG is declarative, while
the others are procedural. That is, rather than telling the
computer how to compute the factorial of a number, in PROLOG one
tries to tell the computer what the factorial of a number is.

Micro-PROLOG is an implementation of PROLOG for microcomputers.
Since 1980 it has been available for microcomputers with the Z80
microprocessor and the CP/M operating system. It is currently
being implemented for a wide range of other microcomputers such
as the Sinclair Spectrum, BBC micro, Apple, and Commodore 64.

Returning to our initial formal specification of the factorial
function, we can see that little work is required to code the

Digital Educational Services
Technical Report No. 15

page 7

function in micro-PROLOG. Sentence [1] in the specification can
be used pretty much as it stands, adding only a hyphen in the
relationship name:

[4] 0 has-factorial 1

This is the simplest type of micro-PROLOG statement because no
conditions are involved. More complex micro-PROLOG statements
can be thought of as rules that define conditions under which
certain assertions are true. Sentence [2] in the formal specifi
cation can be rewritten into such a rule using the micro-PROLOG
convention where variables are X, Y, Z, x, y, z, Xl, Yl, Zl, xl,
yl, zl, etc., and the built-in arithmetic of the TIMES program
and the LESS relation. (Note that the uppercase and lowercase
letters represent different variables in this version of micro
PROLOG.)

[5] X has-factorial Y if
o LESS X and
X is-the-successor-of Z and
Z has-factorial x and
TIMES (X x Y)

This definition of the "has-factorial" relation is recursive
because the relation name "has-factorial" appears as one of the
conditional clauses within its own definition. Since X is
defined by the previous clause to be the successor of Z, Z must
be X-l. Thus, the recursive call in the clause"Z has-factorial
x" TSactually computing the factorial of X-l.

The specification of "is-the-successor-of" given in Sentence [3]
is coded in micro-PROLOG using the built-in SUM program:

[6] X is-the-successor-of Y if
SUM (Y 1 X)

The micro-PROLOG query for finding the factorial of 4 is:

Which (x 4 has-factorial x)

This is read,

Which values of x are there such that the relation
"4 has-factorial-x" is true?

Such a query follows the same pattern as queries to databases in
micro~PROLOG. Indeed, in PROLOG, there is no distinction between
program and database. A program consists of statements about
relationships between individuals, which may be in the form of
facts or rules.

Digital Educational Services
Technical Report No. 15

THE PROMISE OF LOGIC PROGRAMMING

page 8

Given only this exposure to recursion in LISP and micro-PROLOG,
one might prefer Pascal or even BASIC. The syntax of LISP and
micro-PROLOG may appear unfamiliar, and some (like the first
author) might even find it initially difficult to conceptualize
something like the factorial function in terms of rules. The
syntactic objection might be waved off by saying "one gets used
to it," but the conceptual barrier warrants more explanation.

First, one must realize that neither LISP nor PROLOG was designed
for mathematical calculation. The reader is referred to the
texts listed at the end of this paper for a full discussion of
their design considerations. Second, if all one wants to do is
answer the question, "What is the factorial of n?," we agree that
one might as well simply use a calculator with the appropriate
function key.

But now the PROLOG twist. We have seen that the factorial of 4
can be computed in BASIC by using the statement:

LET X = FNF(4)

and in Pascal by:

x := factorial(4);

and in LISP by:

(setq x (factorial 4»

and finally in micro-PROLOG by:

Which (x 4 has-factorial x)

In the three procedural languages, one cannot use the functions
defined in this paper to find out what number 24 is the factorial
of. That is, one cannot write statements such as:

24 = FNF (x)
24 := factorial(x);
(setq 24 (factorial x) .

Since the PROLOG definition is based on logic, however, one can
theoretically use it to solve the problem by posing the query:

Which (x x has-factorial 24)

This is the promise of logic programming: rule-based systems
comprehensively defined can be run backwards as well as forwards.
Unfortunately, implementation constraints on present machines
restrict numerical applications at the present time. The major

Digital Educational Services
Technical Report No. 15

page 9

I'r

problem is that the built-in micro-PROLOG relations LESS, SUM,
and TIMES are not declarative. They are machine-coded functions
that perform their operations using standard procedural tech
niques. If they were declarative, one should indeed be able to
get an answer to the backwards question posed above.

Interestingly enough, it is possible to write declarative ver
sions of the LESS, SUM, and TIMES relations. The code for accom
plishing this is provided below.

We begin by declaring successor relationships:

1 is-the-successor-of 0
2 is-the-successor-of 1
3 is-the-successor-of 2
4 is-the-successor-of 3
5 is-the-successor-of 4
6 is-the-successor-of 5

Using these relationships, we can then declare the rules by which
one determines whether one number is less than another:

X is-less-than Y if
Y is-the-successor-of X

X is-less-than Y if
Z is-the-successor-of X and
Z is-less-than Y

The first rule handles cases where Y is one greater than X, while
the second rule uses recursion to handle all other cases. Given
these relationships, we can now define the "sum" relation declar
atively:

sum (0 0 0)
sum (0 X X) if

o is-less-than X
sum (X 0 X) if

o is-less-than X
sum (X Y Z) if

o is-less-than X and
o is-less-than Y and
X is-the-successor-of x and
sum (x Y y) and
Z is-the-successor-of y

The first rul e says that the sum of 0 and 0 1 S 0. The second
rule says that the sum of 0 and X is X if 0 is less than X. The
third rule says that the sum of X and 0 is X if 0 is less than X.
The fourth rule says that the-sum of X and Y is Z if 0 is less
than both X and Y, X is the successor of some number x, and the
"sum" relation is true such that x plus Y is y when Z is the
successor of y. In essence, the recursive call in-the last rule
breaks down the problem of finding the sum of 2 and 3 as follows:

Digital Educational services
Technical Report No. 15

page 10

2 + 3 = (l + 1) + 3
= 1 + (1 + 0) + 3
= (1 + 0) + (1 + 0) + 3
= (1 + 0) + (l + 0) + (2 + 1)

= (l + 0) + (1 + 0) + 2 + (l + 0)
= (1 + 0) + (l + 0) + (1 + 1) + (l + 0)
= (1 + 0) + (1 + 0) + 1 + (l + 0) + (l + 0)
= (1 + 0) + (l + 0) + (1 + 0) + (1 + 0) + (l + 0)

and returns the answer 5 by finding the successor of the
successor of the successor of the successor of 01

The "times" relation can be defined declaratively in terms of the
above "sum" relation:

times (0 0 0)
times (0 X 0) if

o is-less-than X
times (X 0 0) if

o is-less-than X
time s (X y Z) i f

o is-less-than X and
o is-less-than Y and
X is-the-successor-of x and
times (x Y y) and
sum (Y Y Z)

Interpretation of this definition is similar to "sum." We now
have fully declarative definitions of the "less," "sum," and
"times" relations. Note that these relations are written with
lowercase letters to distinguish them from the built-in rela
tions. A fully reversible micro-PROLOG factorial function can
then be written by replacing the built-in functions with our
declarative versions:

X has-factorial 1 if
X is-less-than 1

X has-factorial Y if
o is-less-than X and
X is-the-successor-of Z and
Z has-factorial x and
times (X x Y)

This definition now allows us not only to ask the forward ques
tion:

Which (x 3 has-factorial x)

and achieve the answer 6, but also to ask the backward question:

Which (x x has-factorial 6)

Digital Educational Services
Technical Report No. 15

and achieve the answer 3.

page 11

I.

As one might expect, the processing time needed to compute either
of these answers is very slow. If you try it yourself, we
recommend that you stick to the factorials of 0, 1, 2, and 3.
Computing the factorial of 4 requires declaration of successor
relationships up to 24 and takes several minutes to compute.
This performance problem, however, is partially due to the
sequential nature of the systems on which micro-PROLOG is
currently implemented. When parallel machines are commonplace in
the Fifth Generation, perhaps the promise of logic programming
will make the PROLOG twist a valuable technique rather than just
an interesting exercise.

REFERENCES CITED AND RELATED READINGS

Clark, K.L., J.R. Ennals, and F.G. McCabe, 1982. A micro-PROLOG
Primer. Logic Programming Associates, London, England.

Clocksin, William F., and Christopher S. Mellish, 1981. Program-
ming in PROLOG. Springer-Verlag, Berlin, Heidelberg, New
York.

Digital Equipment Corporation, 1982. VAX-ll BASIC Language Ref
erence Manual. Digital Equipment Corporation, Maynard, Massa
chusetts.

Ennals, Richard, 1983. Beginning micro-PROLOG.
Ltd., West Sussex, England.

Ellis Horwood,

Jensen, Kathleen, and Niklaus Wirth, 1974. Pascal User Manual
and Report. Springer-Verlag, Berlin, Heidelberg, New York.

Kowalski, R.A., 1979. Logic for Problem Solving.
Holland, Inc., New York, Amsterdam, Oxford.

Elsevier North

J.

Winston, Patrick Henry, and Berthold Klaus Paul Horn, 1981.
LISP. Addison-Wesley Publishing Company, Reading, Massachu
setts.

