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ABSTRACT

Rule-based systems are a develop~ent associated with recent
research in artificial intelligence (AI). These systems express
their decision-making criteria as sets of production rules, which
are declarative statements relating various system states to
program actions. For computer-assisted instruction (CAl) pro­
grams, system states are defined in terms of a task analysis and
student model, and actions take the form of the different
teaching operations that the program can perform. These compo­
nents are related by a set of means-ends guidance rules that
determine what the program will do next for any given state.

This paper presents the design of a CAl course employing a rule­
based tutorial strategy. The course has not undergone the test
of implementation; the paper presents a conceptual design rather
than a programming blueprint. The subject of the course is
ReGIS, the Remote Graphics Instruction Set on Digital Equipment
Corporation GIGI and VT125 terminals. The paper describes the
course components and their interrelationships, and discusses how
program control might be expressed in the form of production
rules.

Jesse M. Heines is with Digital Equipment Corporation in Bedford,
Massachussetts. Tim O'Shea is with The Open University in Milton
Keynes, England.
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O'Shea (1979) has argued that one of the most important aspects
of any CAl program is its response-sensitivity: to assert that
one teaching program is more response-sensitive than another
teaching program is to claim that in some sense it is more
adaptive to the individual learning needs of the students being
taught than the other program.

O'Shea's work achieved response-sensitivity by adopting Hartley's
(1973) framework for adaptive teaching programs. This framework
consists of:

• a "vocabulary" of teaching operations,
• a representation of the task,
• a model of the student, and
• a set of means-ends guidance rules.

The teaching operations are the different instructional acti­
vities that the CAr program can present~ In the course design
described in this document, these operations take the form of
on-line presentations of new material, exercises directed at
reinforcing specific instructional objectives, "laboratory"
sessions in which students tryout graphics commands in a
controlled environment, and formal tests.

The representation of the task is a detailed task analysis
listing each component skill needed to master the material being
taught. It is represented as a directed graph that defines the
prerequisite relationships between each skill.

The student model is a representation of the student's knowledge
in terms of the task analysis and a history of the student's
interactions with the program. It can be thought of as a state
vector that describes the student's:degree of mastery for each
component skill and various other pertinent student characteris­
tics.

The means-ends guidance rules relate states defined by the
student model to sets of teaching operations. These rules deter­
mine which instructional activities the CAl program will present
next given different student states. (See Heines, 1983, for a
basic discussion of rule-based systems.) .

Each of these components is described in detail in the sections
that follow.
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ReGIS, the Remote Graphics Instruction Set, allows programmers to
perform a large variety of graphics operations on GIGI and VT125
terminals manufactured by Digital Equipment Corporation. The
course design presented in this paper limits itself to the first
three ReGIS instructions (position, Vector, and Curve), screen
addressing in absolute, relative, and default modes, and the use
of the terminals' address stack. This subject matter was chosen
because it is:

• sophisticated enough to yield a meaningful task analysis,
yet simple enough to allow the analysis to be performed
in a reasonable amount Of time,

• applicable to a wide range of students at various levels
so that its response-sensitivity can be evaluated,

• suitable for the type of treatment to be implemented.

The course employs four teaching operations:

• expository demonstrations,
• directed exercises,
• a ReGIS "laboratory", and
• formal tests.

The characteristics of these operations are described in the
sections that follow. Their interrelationships are shown in
Figure 1.

Expository Demonstrations

Expository demonstrations are basically "press-RETURN-to­
continue" slide shows that introduce concepts. Of all the
teaching operations, they exhibit the lowest levels of inter­
action and response-sensitivity. Their purpose is as much
"telling" as it is "teaching", and they last about 3-5 minutes
each. While one or two orientation questions may be incorporated
into the presentation, the student's only real option is to
interrupt the operation and call up a control menu. These
sections make heavy use of graphics to relate ReGIS commands to
screen actions.

Directed Exercises

Exercises provide either computer-generated or
for students to solve. In the course, student
problems would usually take the form of ReGIS
The CAl program would parse student responses

prestored problems
responses to these

command strings.
to allow extensive
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RELATIONSHIPS BETWEEN TEACHING OPERATIONS
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AI comes into play in these exercises as student responses are
parsed. Each skill demonstrated by the student is recorded in a
response history file, and the student model is updated accor­
dingly. This data can then be used to point out inconsistencies
in the student's thinking if slhe makes an error using the same
skill in a later lesson.

The "directed" nature of the exercises refers to using the
student's performance data to determine the type and difficulty
of problems presented. This feature contributes to the program's
response-sensitivity. Students who do well will find that the
problems get harder quite quickly. Weaker students will be led
along more slowly, making sure that they possess each component
skill before higher level skills are presented.

The initial exercise type and difficulty level depend on three
factors:

(1) whether the student has gone through the expository
demonstration,

(2) the reason the student is going through the exercises
(by choice or as remediation caused by problems with
higher level material), and

(3) the student's own statement of what slhe thinks slhe
knows.

Students will normally exit an exercise section by demonstrating
mastery or non-mastery of the skills being practiced. (They may
also exit by pressing an EXIT key or entering EXIT in response to
a ques t i o n , ) If they demonstrate non-mastery, one of three
things may happen depending upon their state as defined by the
student model:

(1) If the student has already demonstrated mastery on each
of the prerequisite skills for this module, slhe would
be branched to a set of secondary teaching operations
(if present) on the cur rent material. (Secondary
teaching operations are ones that are designed for
remediation only, not initial presentation.) These
teaching operations present the material again in a
more detailed manner or from another perspective. This
rule implies that there might be some instructional
modules that are only accessed for remedial purposes.
Students who go through the course grasping concepts
the first time around would never see these modules.

(2) If the student has not demonstrated mastery on one of
the prerequisite modules, slhe would be directed to
study (or restudy) that module before attempting the
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(3) If there are more than one prerequisite modules on
which the student has not demonstrated mastery, the
system would ask a number of questions to try to
identify which prerequisites are most likely missing.
This is done by analyzing the task representation in
relation to the student model.

ReGIS Laboratory

The third teaching operation is intended to provide the greatest
amount of response-sensitivity and demonstrate the course's most
sophisticated AI aspects. These characteristics can be accom­
plished by providing students with a ReGIS "sketchpad" or
"laboratory" environment in which they can enter ReGIS commands
and see the results of these commands directly. The lab would be
implemented in a dual screen format with the ReGIS code appearing
on one side and the graphic output on the other.

The AI component here involves "watching" students as they enter
commands, updating the student mod~l for each skill demonstrated,
and looking for cliche errors in their code. These techniques
are similar to those of Burton and Brown (1982) and Shrager and
Finin (1982). Even if the course did not attempt to offer any
real "coaching" a la WEST (Burton and Brown, 1982), it could
still provide detailed error messages for syntactic and simple
theoretical errors similar to those in the directed exercises.

The difference between the directed exercises and ReGIS lab is
the degree of computer control. If effectively implemented,
measures of their instructional effectiveness should yield equiv­
alent results. A major difference between the two styles,
however, is that it is more difficult to identify missing prereq­
uisites in a laboratory environment because there is no mechanism
for asking direct questions. Failure to demonstrate mastery in
this environment would therefore be coupled with more conven­
tional directed exercises .

Formal Tests

When a student demonstrates a particular - skill in either the
directed exercises or ReGIS laboratory, the probability with
which s/he actually possesses that skill is somewhat less than
1.0. For example, a student may "discover" defaults by leaving
out an X or Y value for the P command in the ReGIS laboratory.
No error message would be generated, and the student may not even
realize what has happened until some time later. While. this
situation represents an excellent (and some would say the best)
learning scenario, it is impossible to know for certain whether
the student has actually internalized the concept s/he has just
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Evaluation of actual learning requires a formal testing situa­
tion. The administration of formal tests could be very similar
to the methods employed for directed exercises, with the stipula­
tion that part of the feedback would be eliminated. Formal
testing need not be limited to multiple choice and short answer
responses.

THE TASK REPRESENTATION

List of Component Skills

Table 1 lists the component skills needed to master all aspects
of the ReGIS position, Vector, and Curve commands covered in the
course. Each of these skills represents the course's smallest
possible instructional ~nit. That is, the course's AI component
would be designed to identify skills that a student lacks and
route him or her to the specific teaching operations on those
skills.

The component skills would be grouped into modules for presenta­
tion to students going through the course for the first time.
This does not mean that remedial work on one skill in a module
necessitates redoing the other skills in that module. It simply
means that the skills would be presented together the first time
for the sake of continuity and organizational convenience. The
skill groupings for each module are shown in Table 2.

Skills 35 and 43 would not actually be taught in the course.
These skills involve understanding angle measure in degrees and
interpolation, respectively, and are what Robert Mager and Peter
Pipe (1974) call "entry level objectives". They are required for
students to master higher level objectives, but students are
expected to bring these skills to the course rather than learn
them from the course.

Prerequisite Relationships: Directed Graph

A number of prerequisite relationships exist between the 50
component skills. Such prerequisites indicate those skills a
student must possess in order to master higher level skills.
Figure 2 shows the prerequisite relationships represented by a
directed graph. This graph should be interpreted as follows:

• Nodes inside shaded squares represent skills with no pre­
requisites. These are Skills 1, 25, 35, and 43.
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Number

1
2
3
4
5

6
7
8

9

~ 10_1 11
I 12l 13
~

1
I 14
f 15

I 16
17
18
19
20

21
22

23
24
25
26
27

Description

Recognizes screen as a rectangular dot matrix.
Can translate screen positions into (x,y) pairs.
Can translate (x,y) pairs into screen positions.
Knows absolute screen limits (767,479).
Knows that initial cursor position is upper left-

hand corner of screen.
Understands the concept of current cursor position.
Can interpret the standard [x,y] address format.
Can specify absolute screen addresses in [x,y]

format.
Understands defaults.
Given the current cursor position as [xc,yc], knows

the meaning of:
[x] -) [x ,yc]
[,y] -) [xc,y]
[] -) [xc,yc]

Understands relative addresses.
Given the current cursor position as [xc,yc], knows

the meaning of:
[+x,+y] -) [xc+x,yc+y]
[+x]- -) [xc+x,yc]
[~+y] -) [xc~yc+y]

[+x,y] -) [xc+x,y]
[x, +y] -) [x ,yc+y]

Can use the basic P command to position the cursor.
Knows the current cursor position after execution

of a P command.
Can use all addressing schemes in P commands.
Can work with P command aberrations such as

P [xl, Y1 ] [ x2 , Y2 ] ... [ xn , yn] .
Can store addresses on the stack with (B).
Can pop addresses off the stack with (E).
Can use the S(E) command to erase the screen.
Can use the basic V command to draw a vector.
Knows the current cursor position after execution

of a V command.

(continued ... )
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TASK MODEL REPRESENTED AS A DIRECTED GRAPH
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• The skill hierarchy reads from bottom to top. Lines
connecting two skills indicate that the higher level
skill requires the lower level skill below it as a pre­
requisite. For example, Skill 2 requires Skill 1 as a
prerequisite.

• When two or more lines lead into a node from the bottom,
all of the lower level skills are required as prerequi­
sites. For example, Skill 5 requires both Skills 3 and 4
as prerequisites.

• When two or more lines lead out of a node from the top,
the lower level skill is a prerequisite for each of the
higher level skills. For example, Skill 26 is a prereq­
uisite for Skills 27, 28, and 29 .•

• The AND hexagon is not a node. It, indicates that all of
the lower level skills are required as prerequisites for
each of the higher level skills. For example, Skills 6
and 7 each require both .skills 2 and 3 as prerequisites.

• The OR hexagon is not a node. -: It indicates that anyone
of the lower level skills is sufficient prerequisite for
each of the higher level skills. For example, Skill 19
requires anyone of Skills 10 through 18 as a prerequi­
site.

(The AND and OR hexagons were used to keep the graph readable by
avoiding a large number of crossing lines. Note that Skill 19
requIres any of Skills 10-18, while Skill 20 requires all of
Ski 11 s 10-1 8 • Ski 11 2 1 , therefore,. r equ i res a 11 0 f""Ski 11 s
10-20.)

The prerequisite relationships of the component skills dictate
the prerequisite relationships between the modules. These pre­
requisites are shown in Figure 3.

Prerequisite Relationships: Production Rules

The directed graph presented iri the previous section is equiva­
lent to the set of facts listed in Table 3. This table should be
interpreted as follows:

• NIL in the left-hand column indicates that no prerequi­
sites are required for the corresponding skills in the
right-hand column. For example, no prerequisites are
required for Skills 1, 25, 35, and 43.

• If more than one skill is listed on a single line in the
left-hand column, all of those skills are required as
prerequisites for the each of the skills listed in the
right-hand column. (This is the AND function.) For
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if the student has mastered
these skills •..

N~L

1
2 3
3 4
6 7
7
8 9
8 13
8
9 13
10 11 12 13 14 15 16 17 18
10
11
12
13
13
14
15
16
17
18
19 20
21
23
24 26
26
29
31
33
34 36 37
35
38
40
42 43
43 47
44 45
48 49

s/he has met the prerequi­
sites for these skills ••.

1 25 35 43
2 3 4
6 7
5
13
8 9
10 11 12
17 18
23
15 16
20
19
19
19
14
19
19
19
19
19
19
21
22 26 31 33 42 47
24
29
27 28
30
32
34
38 40
36 37
39
41
44 45
48 49
46
50
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example, Skills 3 and 4 are both required as prerequisite
for SkillS.

• If more than one skill is listed on a single line in the
right-hand column, all of the skills listed in the
corresponding left-hand column are required as prerequi­
sites for each of the skills listed in the right-hand
column. For example, both Skills 6 and 7 require Skills
2 and 3 as prerequisites.

• If a skill appears on more than one line in the left-hand
column, that skill is required as a prerequisite for more
than one higher level skill. For example, Skill 3 is
required as a prerequisite for Skills 5, 6, and 7.

• If a skill appears on more than one line in the right­
hand column, any of the corresponding left-hand columns
provides sufficient prerequisites for that skill. (This
is the OR function.) For example, Skill 19 requires
anyone of Skills 10 through 18 as a prerequisite.

Using these facts, the prerequisite relationships (and thus the
entire representation of the task) can be defined by production
rules. The full set of production rules defines the program's
task model.

The production rule formalism makes it conceptually simple to
identify both the skills for which the student has met the pre­
requisites and the prerequisites needed to study any particular
skill. For example, suppose that a rudimentary student model
consists of a simple list of the skills that a particular student
has mastered. Such a list might contain 1, 2, 3, 7, 8, 9, and
12. A function can then be written that steps down the list of
task model rules, testing whether each left-hand side (LHS) is a
perfect subset of the student model. If it is, the student has
met the prerequisites for the skills listed on the right-hand
side (RHS) of that rule. For the example list of skills shown
above, this function would identify the Skills 4, 6, 10, 11, 19,
23, 25, 35, and 43. For a fuller understanding of why this is
so, compare this list to the graph in Figure 2. The student is
ready for:

• Skill 4 because the list of skills mastered includes
Skill 1,

• Skill 6 because it includes both Skills 2 and 3,

• Skills 10 and 11 because it includes both Skills 8 and 9,

• Skill 19 because it includes Skill 12 (only one of Skills
10-18 is required for Skill 19, but note that the student
is not ready for Skill 20, because that skill requires
all Skills 10-18),
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• Skills 25, 35, and 43 because these have no prerequi­
sites.

The discussion thus far has concerned moving up the directed
graph to answer the question: "given a specific set of mastered
skills, which skills is the student now ready to study, i.e., for
which skills does the student now possess the prerequisites?"
The beauty of the production rule approach is that the same
representation can be used equally well to move down the directed
graph and answer the converse question: "given a specific skill,
which prerequisite skills must the student possess to be ready to
study it?" This characteristic is crucial to achieving the AI
diagnostic qualities of the directed exercises and ReGIS labora­
tory discussed previously.

For example, suppose that the student hadn't really studied all
of the skills specified by the list 1, 2, 3, 7, 8, 9, and 12.
Instead, s/he may have actually only studied Skill 12. By virtue
of demonstrating mastery on that skill, the system's AI component
would update its student model by marking the student's mastery
of all the skills prerequisite for Skill 12 as "assumed". To
determine which skills to mark, a function can be written that
tests the RHS of each rule. If the skill just mastered is a
member of the list of RHS skills, mastery of each of the skills
listed on the LHS is assumed.

In practice, the function described above would be called with
the number of the skill just mastered and a list of skills
representing the student model. The function would then return a
list of RHS skills that are not already members of the student
model. If, for example, the student model list is empty, calling
this function with "12" as an argument would return the list of
skills 1, 2, 3, 7, 8, and 9. If the student model already
indicates mastery on Skills 1 and 3, calling it with "12" as an
argument would return the Skills 2, 7, 8, and 9.

THE STUDENT MODEL

Skill Status

The basic purpose of a student model is to represent a student's
current knowledge state. In its simplest form, this state might
be defined by the student's status on each of the skills in the
task model. As indicated in the previous section, one rudimen­
tary way to do this is to maintain a list (or state vector) of
those skills on which the student has demonstrated mastery. The
utility of this list can be greatly improved, however, by letting
the status of each skill take on a number of values. The student
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model employed in the course would use the following seven
values:

-3 NON-MASTERY DEMONSTRATED on a test
The student has demonstrated

possess this skill by failing a
This is the strongest assertion of
system can make.

that s/he does not
test that covered it.
non-mastery that the

-2 NON-MASTERY ASSUMED due to incorrect
The student is assumed not to

because s/he has failed a test that
requisite to the one in question.

usage in lab
possess the skill
covers a skill pre-

-1 NON-MASTERY ASSUMED due to incorrect usage of a
prerequisite skill

The student is assumed not to possess the skill
because s/he has either demonstrated non-mastery on or
used incorrectly a lower level skill for which this
skill is a postrequisite. (Note that the skill in
question may be more than one level removed from the
lower level skill on which the student is actually
working.) This is the weakest assertion of non-mastery
that the system can make.

MASTERY ASSUMED due to correct usage of a postrequisite
skill

The student is assumed to possess the skill because
s/he has either demonstrated mastery on or used a higher
level skill for which this skill is a prerequisite.
This is the weakest assertion of mastery that the system
can make.

1

NO DATA
The student has not studied this skill, has

demonstrated mastery on any skill for which it is a
requisite, and has not demonstrated non-mastery on
skill for which it is a postrequisite.

not
pre­

any

2 MASTERY ASSUMED due to correct usage in lab
The student is assumed to possess the skill because

s/he used the skill in either the ReGIS laboratory or
the directed exercises.

3 MASTERY DEMONSTRATED on a test
The student has demonstrated mastery of this skill

by passing a test that covered it. This is the
strongest assertion of mastery that the system can make.

The student model value for each skill is initialized to 0 when
the student registers. As s/he works through the course, one of
the non-zero values is assigned to each skill on which the system
has or can infer data. These values add a level of complexity to
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the functions introduced in the discussion of the ~ask represen­
tation, in that analysis of the production rules cannot be done
simply by testing for the presence of a skill number in a list.
The complication is not extreme, however, and should present no
serious implementation problems.

It is also possible to express a student
procedures rather than a state vector.
discussion of this technique.

Learning Rate and Learning Style

model in terms of
See Self, 1974, for a
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In addition to a student's skill status, the student model can
also maintain two simple and rudimentary representations of the
student's learning rate and learning style. Learning rate is a
measure of the student's ability to assimilate new material
quickly. Learning style is a measure of the manner in which the
student prefers new material to be presented.

The student's learning rate would govern the speed, depth, and
amount of repetition and reinforcement in initial presentations
of new material. Fast students would receive fast presentations
extending to considerable depth before going into the directed
exercises as reinforcers. Slower students would be presented
with more detailed introductions to new material at lower levels,
and would find more repetition in the presentations as well as
more frequent reinforcement via the directed exercises. Learning
rate might be expressed as one of the following five values:

• VERY-FAST
• FAST
• AVERAGE
• SLOW
• VERY-SLOW

The student's preferred learning style might be represented by
one of three values:

• EXPOSITORY the student prefers to go through the full
expository demonstration before doing exercises.

• EXERCISE -- the student prefers to dive right into the
directed exercises.

• LABORATORY -- the student prefers to try things out in
the ReGIS laboratory after a short explanation of perti­
nent concepts and commands.

A number of techniques exist for assessing learning style, but a
finesse is also feasible: simply ask students which style they
prefer. Students would be allowed to change their learning style
preference as the course progresses, as well as override the
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default selection for any particular module. The system might
monitor the number of overrides and change the default learning
style when this number becomes significant.

THE MEANS-ENDS GUIDANCE RULES

Means-ends guidance rules relate states defined by the student
model and student history to specific teaching operations and
determine which instructional activities the CAl program will
present next given different student states. A rudimentary
student history could be as simple a list of all responses
entered by the student. In practice, this history might also
flag responses to non-subject matter queries as "choices" made by
the student, e.g., his or her selections when presented with a
number of options on a menu.

Sample means-ends guidance rules (in plain English format) might
be as follows:

If the student is reentering a module slhe has already
studied and done well on, query him or her as to what
skills slhe wishes to study and in what learning style.
(The response to these queries would be recorded in the
student history as " choices".)

If the student is entering a module for the first time,
make the initial subject matter presentation in the form
specified by the LEARNING-RATE and LEARNING-STYLE ele­
ments of the student model.

If the student is reentering a module slhe has already
studied but done poorly on, make subject matter presen­
tations in EXPOSITORY style on all Skills for which the
student model indicates NO-DATA or NON-MASTERY, and make
these presentations as if the value of LEARNING-RATE was
SLOW or VERY-SLOW. (This would force more repetition
and reinforcement.)

1-

I

:1

~

I 2.

II
~

3.

I
4. If the student demonstrates non-mastery on a specific

skill and the student model indicates that there are no
prerequisites for that skill on which mastery has not
been demonstrated or assumed (that is, mastery has been
demonstrated or assumed on all the prerequisites),
branch to a secondary teaching operation for that skill
if one exists. If no secondary teaching operations
exist for the skill in question, apply Rule 3 above.
(The bUlky negative wording in the IF clause was used to

make this rule consistent with Rules 5 and 6.)
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5. If the student demonstrates non-mastery on a specific
skill and the student model indicates that there is only
one prerequisite for that skill on which mastery has not
been demonstrated or assumed, apply Rule 1 to the module
containing that prerequisite skill.

6. If the student demonstrates non-mastery on a specific
skill and the student model indicates that there are
more than one prerequisites for that skill on which
mastery has not been demonstrated or assumed, apply Rule
1 to the module containing the prerequisite slhe is
"most likely" lacking. (The system would determine
which skill is "most likely" lacking by analyzing the
student model values for other skills with the same pre­
requisites.)

Representation of Left-Hand Sides

The left-hand sides (LHSs) of these rules (the IF parts) repre­
sent specific patterns to be matched against data derived from
the student model and student history. For Rules 1, 2, and 3,
these data would include the status of the module the student has
chosen to study and the statuses of each of that module's sub­
skills. The LHSs of these rules might therefore take the form:

1. ((STATUS-OF-MODULE-CHOSEN EQUAL 0)
(ALL-SUBSKILL-STATUSES EQUAL 0))

2. ( (STATUS-OF-MODULE-CHOSEN (NOT EQUAL) 0)
(AVERAGE-SUBSKILL-STATUS GREATER-THAN 0»)

3. ((STATUS-OF-MODULE-CHOSEN (NOT EQUAL) 0)
(AVERAGE-SUBSKILL-STATUS LESS-THAN 0»))

The function calls (STATUS-OF-MODULE-CHOSEN EQUAL 0) and (STATUS­
OF-MODULE-CHOSEN (NOT EQUAL) 0) would return TRUE if the status
of the module chosen is equal to or not equal to 0, respectively.
The function call (ALL-SUBSKILL-STATUSES EQUAL 0) would operate
on sets of skills, and return TRUE if each of those skills has a
status value equal to 0. Likewise, the function calls (AVERAGE­
SUBSKILL-STATUS GREATER-THAN 0) and (AVERAGE-SUBSKILL-STATUS
LESS~THAN 0) would return TRUE if the average subskill status
value is greater than or less than 0, respectively. When the
values of all function calls on the LHS of a rule are TRUE, that
rule fires.

For Rules 4, 5, and 6, the patterns to be matched would include
the status of the particular skill just studied and the statuses
of each of that skill's prerequisite skills. The LHSs of these
rules might therefore take the form:
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4. «SKILL-STATUS LESS-THAN (3)
(NO-PREREQ-SKILL-STATUSES LESS-THAN (3))

5. «SKILL-STATUS LESS-THAN (3)
(ONLY-ONE-PREREQ-SKILL-STATUS LESS-THAN (3))
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6. «SKILL-STATUS LESS-THAN (3)
(MORE-THAN-ONE-PREREQ-SKILL-STATUS LESS-THAN (3))

Representation of Right-Hand Sides

The right-hand sides (RHSs) of the rules (the THEN parts) could
be expressed as a TEACH function with the form:

(TEACH (MODULE-ID
SKILL-ID
LEARNING-RATE
LEARNING-STYLE
SEARCH-STRATEGY))

where

J
u

!
~

I
I

•

•

•

MODULE-ID represents the module to be entered, as
identified in Table 2.

SKILL-ID represents the skill to be taught, as identified
in Table 1.

LEARNING-RATE represents the amount of repetition and
reinforcement to use in presentations.

I

• LEARNING-STYLE represents which of the three types of
teaching operations to use.

• SEARCH-STRATEGY represents the manner in which this
teaching operation was selected, e.g., REMEDIAL or MOST­
NEEDED.

Using this format, the RHSs of the sample rules could be
expressed as follows (the asterisk is a wild card that matches
any value of the function argument list in the corresponding
posi tion) :

1. (TEACH (MODULE-CHOSEN
*
LEARNING-RATE
LEARNING-STYLE
*) )
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2. (TEACH (MODULE-CHOSEN
QUERY
FAST
QUERY
*»

3. (TEACH (MODULE-CHOSEN
(SKILLS-WITH-STATUSES (LESS-THAN OR EQUAL) 0)
SLOW
EXPOSITORY
*) )

4. (TEACH (MODULE-CONTAINING-SKILL
SKILL
LEARNING-RATE

*
REMEDIAL) )

OR
(TEACH (MODULE-CONTAINING-SKILL

SKILL
SLOW
EXPOSITORY
*) )

5. (TEACH (MODULE-CONTAINING-PREREQUISITE-SKILL

*
LEARNING-RATE
LEARNING-STYLE
*) )

6. (TEACH (MODULE-CONTAINING-PREREQUISITE-SKILL

*
LEARNING-RATE
LEARNING-STYLE
MOST-NEEDED»

The RHS for Rule 4 has two TEACH functions to cover the case in
which no secondary teaching operations exist for a specific
skill. This representation makes the rules more complex, but
provides explicit definition of what to do if a TEACH function
request cannot be filled. Another way to tackle this problem is
to use only one TEACH function in each rule but check whether the
rule succeeds after the RHS fires. If the rule does not succeed,
the system must continue looking for another rule whose LHS
matches the data in the student model and student history.

CRITIQUE AND CONCLUSIONS

The rule-based tutorial described in this paper has not undergone
the test of implementation. However, the approach described here
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is a conceptually clean extension of a working computer tutor
that uses production rules in the teaching of quadratic equations
(O'Shea, 1979). On implementation, some of the details of the
formalism described here would probably have to change to ensure
computational efficiency and to maintain reasonable response time
in the particular interactive computer environment adopted.

For example, test implementations in MacLISP on a DECsystem-20
have shown that while the production rule formalism is highly
efficient for expressing the prerequisite relationships as shown
in Table 3, use of this formalism to update the student model
after each response is relatively inefficient. The main ineffi­
ciency sterns from processing the rules repeatedly to find all of
the prerequisites or postrequisites for the skill on which the
student is currently working. This problem can be attacked by
computing all of the prerequisites and postrequisites when the
course is installed and storing these as lists in a simple array.
This approach allows the student model to be updated much more
quickly without sacrificing the elegance of the rule-based
strategy.

Test implementations have also shown that the production rule
approach can be applied to interpreting student responses. The
parser that interprets command strings entered by the student in
the ReGIS laboratory can be made to return specific patterns,
which can be related to the skills in the task model via produc­
tion rules. For example, consider the command:

P[250,100]

to position the cursor 250 pixels from the left-hand margin and
100 pixels down from its current position. Given this command,
the parser returns:

«COMMAND POSITION) (TYPE POINT)
(X-VALUE-TYPE ABSOLUTE) (X-VALUE 250)
(Y-VALUE-TYPE RELATIVE) (Y-VALUE-SUBTYPE +)
(Y -VALUE 100»

This result can be related to the skills in the task model with
the following rules (these are only a subset of the full set of
address diagnostic interpretation rules):

«(X-VALUE-TYPE ABSOLUTE)
«(X-VALUE-TYPE ABSOLUTE)
«(X-VALUE-TYPE DEFAULT)
«(X-VALUE-TYPE DEFAULT)
«(X-VALUE-TYPE RELATIVE)
«(X-VALUE-TYPE RELATIVE)
«(X-VALUE-TYPE DEFAULT)
«(X-VALUE-TYPE RELATIVE)
«(X-VALUE-TYPE ABSOLUTE)

(Y-VALUE-TYPE ABSOLUTE»
(Y -VALUE-TYPE DEFAULT»
(Y-VALUE-TYPE ABSOLUTE»
(Y-VALUE-TYPE DEFAULT»
(Y -VALUE-TYPE RELATIVE»
(Y-VALUE-TYPE DEFAULT»
(Y-VALUE-TYPE RELATIVE»
(Y-VALUE-TYPE ABSOLUTE»
(Y-VALUE-TYPE RELATIVE»

8 19)
10 19)
11 19)
12 19)
14 19)
15 19)
16 19)
17 19)
18 19)
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For each rule whose LHS is a perfect subset of the result
returned by the parser, the program updates the student model by:

(1) assigning a value of +2 to each the skill listed on the
rule's RHS, and then

(2) assigning a value of +1 to each of the prerequisites
for each of those skills.

Thus the rule-based tutorial might employ several sets of rules
for different functions. The advantage of this approach is that
all such sets are easily changed to "tune" the course and enhance
its response-sensitivity.

Production rule programming is not a trivial task, and one line
of development being pursued is a rule-based authoring system
which makes it easy for educational designers without substantial
programming skills to enter and change sets of course related
production rules (O'Shea et al" 1983). However, we contend that
even without access to such a system it is still more effective
to build CAl programs by identifying tutorial rules than to use
conventional CAl authoring languages, because latter typically
exhibit restrictive orientations toward automating programmed
learning texts via the clumsy apparatus of frames, branches, and
multiple choice questions,

In conclusion, we have shown how the rule-based approach can be
usefully applied to the design of a course that includes exposi­
tion, directed exercises, a simulated laboratory, and tests. In
the resulting course, the various teaching operations are modular
and distinct, as are the production rules used in the student
model for response-sensitivity and as means-ends guidance rules
for scheduling the presentation of teaching operations. It is
therefore possible, for example, to integrate new teaching
operations into the course while maintaining the general level of
response-sensitivity by adding new production rules. Likewise,
any increase in response-sensitivity achieved in the student
model will be applied to all teaching operations. We believe
that these rule-based techniques represent an efficient and
elegant approach to the task of designing and implementing CAl
tutorials.

REFERENCES CITED AND RELATED READINGS

Burton, Richard R., and John Seely Brown, 1982. "An Investiga-
tion of Computer Coaching for Informal Learning Activities."
In Intelligent Tutoring Systems, ed. D. Sleeman and J.S.
Brown, pp. 79-98. New York: Academic Press.



Digital Educational Services
Technical Report No. 14

page 24

Hartley, J.R., 1973.
Teaching System,1I
ies,5(2).

liThe Design and Evaluation of an Adaptive
International Journal of Man-Machine Stud-

I

Heines, Jesse M., 1983. IIBasic Concepts in Knowledge-Based
Systems,1I Machine-Mediated Learning, 1(1):65-96.

Mager, Robert F., and Peter Pipe, 1974. Criterion-Referenced
Instruction: Analysis, Design, and Implementation. Mager As­
sociates, Los Altos Hills, CA.

O'Shea, Tim, 1979. IISelf-Improving Teaching sys t ems ," Ph.D.
Dissertation, University of Leeds. Basel, Boston, Stuttgart:
Birkhauser.

O'Shea, Tim, R. Bornat, B. du Boulay, M. Eisenstadt, and I. Page,
1983. IITools for Designing Intelligent Computer Tutors,1I in
Human and Artificial Intelligence, ed. A. Elithorn and R.
Banerjii, London: North-Holland.

Self, John, 1974. IIStudent Models in Computer-Aided Instruc­
tion,1I International Journal of Man-Machine Studies, 6:261­
276. .

Shrager, Jeff, and Tim Finin, 1982. II An Expert System that
Volunteers Advice. 1I Proceedings of the 1982 National Confer­
ence on Artificial Intelligence (sponsored by the American
Association for Artificial Intelligence), Pittsburgh, Pennsyl­
vania, August 18-20, 1982, pp. 339-340. Los Altos, CA:
William Kaufmann, Inc.

ACKNOWLEDGMENTS

This work was performed while the first author (J.H.) was a
Visiting Researcher with the Computer Assisted Learning Research
Group at The Open University. He is grateful to Tony Hasemer and
Rick Evertsz for their help in programming test implementations
of these ideas in LISP, and to the staff of the Academic
Computing Service for making computer equipment and time avail­
able for this study.

The second author (T.O'S.) is grateful to Richard Bornat of Queen
Mary College for his substantial help in developing production
rule formalisms for computer tutors.




