
THE PERSONAL COMPUTER AS AN APPLIANCB
PROBLEM I: INTEGRATING TRAINING AND DOCUMENTATION

Technical Report No. 11

August 1981

DIGITAL EQUIPMENT CORPORATION
EDUCAllONAl SERVICES

11 Crosby Drive
Bedford. Massachusetts 01730

momDDla

This Technical Report may be copied
for non-commercial purposes with
credit to the authors and Digital
Equipment Corporation.

THE PERSONAL COMPUTER AS AN APPLIANCE
PROBLEM I: INTEGRATING TRAINING AND DOCUMENTATION

Jesse M. He ines, Ed. D.

ABSTRACT

Personal computers will become ubiquitous office appliances only
when their ease of use is significantly increased by integrating
adequate training and documentation with the base system. This
integration requires careful attention to human engineering, by
providing intuitive access to HELP and on-line training, design
ing clear and informative error messages, prompting users for
input, orienting users to which mode they are in, and presenting
information on the screen in such a way as to avoid disrupting
the user's job or task context. Such features often require
trade-offs between ease of use and system performance. Such
trade-offs must be made wi th a thorough knowledge of the user
population and how the system will be used.

This paper has been accepted for presentation at the Internation
al Conference on Computers and Society (sponsored by the IEEE) in
October, 1981.

Digital Educational Services
Technical Report No. 11

THE PROBLEM

page 1

The personal computer presents a number of new challenges for
those of us involved in training and documentation. It is rela
tively easy to justify a tuition of $500 for a one-week training
course when you have a $100,000 computer, but far more difficult
when the computer costs $2,500. Computer costs have plummetted,
while training costs have skyrocketed. Yet the need for training
still exists, perhaps more than ever. Computer systems are
better human-eng ineered than in the past, but they are also more
complex. Software is easier to use, but the people using it are
far more computer-naive (and even computer-phobic) than the users
most computer professionals are familiar with.

The problem is to pr ov ide the needed training and documentation
in a manner acceptable to personal computer users and at a price
that they are willing to pay. Personal computers will not take
their place as standard office appliances until these goals are
achieved. Training and documentation must be succinct, but
comprehensive. They must be readily accessible, but extensive
enough to answer users' questions. They must provide different
levels of detail for different users, but not be obtrusive and
disrupt the users' work flow. They must be integrated with the
computer system so that all components meld into a useful and
attractive package.

This paper does not provide formulae for meeting all of the above
criteria. Rather, it discusses software techniques that might be
employed to help meet the challenges presented and the ramifica
tions of implementing these techniques in a personal computing
env t r onmene ,

CHARACTERISTICS OF APPLIANCES

Appliances are ubiquitous items and have several distinctive
characteristics:

• They usually come with very small instruction book
lets.

• They have simple, non-threatening appearances.
• They have clearly marked controls whose functions are

obvious.
• They have an aura of familiarity.
• Their function and operation can be inferred from

their design.

Digital Educational Services
Technical Report No. 11

page 2

Some would classify the previous characteristics as features that
make appliances easy to use. But they do more: they make using
appliances intuitive.

Most people learn to use appliances by intuitive trial and error.
They take the appl iance out of its box, study it to see how its
parts differ from other appliances with which they are familiar,
make a few assumptions, plug it in, and give it a try. If it
doesn't work, they revise their assumptions and try again. If it
st ill doesn't work, perhaps then they turn to the instruction
booklet, but they will probably stop reading as soon as they find
out what they forgot to do. Their assumptions are based on
intuition fed by their past experience and their concept of what
this appliance is supposed to do.

Computer systems are not qui te so intui tive, perhaps because
there wasn't one si tting on the ki tchen table when most of us
were a kids. Far fewer people have real istic concepts of what
computers are supposed to do: if you ask several people how a
computer does word processing, you will get answers spanning an
extremely wide range.

Computer systems must capture intui tive qual i ties if they are
truly to become as simple to use and thus as ubiquitous as common
appliances. The best way to do this is to put more emphasis on
human factors in or ig inal hardware and software designs, and
there is no direct substitute for this effort. But systems
offering similar functions will continue to differ greatly due to
attempts to optimize specific base hardware and software fea
tures. Given these differences and the general lack of prior
computer familiarity among most personal computer users, the most
viable way to achieve intuitive quality in the immediate future
is by integrating the training and documentation with the system
itself.

CHARACTERISTICS OF INTEGRATED
TRAINING AND DOCUMENTATION

Accessing HELP

Most systems have some sort of HELP function. In many cases, the
user simply types the word HELP followed by a system keyword.
For example, if a user types:

$ HELP DIRECTORY

Digital Educational Services
Technical Report No. 11

on VAX/VMS, the system responds with:

DIRECTORY
Provides a list of files or information
about a file or group of files.

Format: DIRECTORY [file-spec[, •••]]

Additional information available:
/BEFORE[=time] /BRIEF (D)
/COLUMNS=n (D=4) /CREATED (D)
/DATE[=option] /NODATE (D)

page 3

HELP on this system is arranged hierarchically by command.
Information is provided at different levels, and users can get
information on the command qualifiers by typing the qualifier as
part of the HELP command. For example,

$ HELP DIRECTORY/PROTECTION

results in the following response:

DIRECTORY

/PROTECTION
/NOPROTECTION (D)
Controls whether the file protection
for each file is listed. The default
is /NOPROTECTION, which does not list
the file protection.

There are two basic problems wi th thi s approach. Fi rst, users
must know what they are looking for before they can look for it.
That is, you must know that you want information on the DIRECTORY
command to be able to know to type HELP DIRECTORY. If you type:

$ HELP FILES

Digital Educational Services
Technical Report No. 11

page 4

because you intuitively think you want information on the files
you have stored, the system will respond wi th :

Sorry, no documentation on FILES

Additional
ALLOCATE
ASSIGN
BLISS
COBOL
CORAL
DEASSIGN
DEFINE
DIFFERENCES
DUMP
EOJ
EXIT
GOTO
INITIALIZE
LEXICAL
LOGIN
MAIL
MESSAGE
OPEN
PATCH
PRINT
READ
REQUEST
RUNOFF
SORT
STOP
SYNCHRONIZE
TYPE
WAIT

information
ANALYZE
BACKUP
CANCEL
CONTINUE
CREATE
DEBUG
DELETE
DIRECTORY
EDIT
ERRORS
FMS
HELP
INQUIRE
LIBRARY
LOGOUT
MCR
MOUNT
PASCAL
PHONE
PROCEDURE
RENAME
RMS
SET
SPECIFY
SUBMIT
SYSTEM
UNLOCK
WRITE

available:
APPEND
BASIC
CLOSE
COpy
DEALLOCATE
DECK
DEPOSIT
DISMOUNT
EOD
EXAMINE
FORTRAN
IF
JOB
LINK
MACRO
MERGE
ON
PASSWORD
PLI
PURGE
REPLY
RUN
SHOW
START
SYMBOLS
TECO
VTEDIT

This is quite a formidable list. It does not function well as a
menu because many of the entries have relatively little meaning
even to average users. (Average users are generally familiar
with the subset of commands that they use regularly and may know
nothing about those command s that are used very infrequentl y.)
To naive users, a menu such as this can be frustrating and even
frightening. More importantly, it provides no clues as to which
commands deal wi th FILES and therefore does 1 i ttle to help the
user find the specific information he or she desires.

One approach to providing HELP that addresses these issues is to
present users with a menu arranged hierarchically by subject area
rather than by command. Even though every computer system seems
to have different commands for similar functions, there are

Digital Educational Services
Technical Report No. 11

page 5

common areas that are intui tive to users wi th at least some
experience. Such areas include:

• accessing the system
• ed i t i ng f i 1 e s
• storing files
• displaying files
• controlling devices
• controlling processes (jobs)
• compiling (and linking) programs
• running and debugg ing programs
• communication facilities

If naive users were presented with a task-oriented menu of this
type rather than a menu of unrelated commands, they could more
easily ascertain how to access the information they are looking
for. In the example above, the user who typed:

$ HELP FILES

when he or she wanted DIRECTORY information would select the
option on storing files from this menu and might then be provided
with the following submenu:

STORING FILES

Additional
CREATE
EDIT
RENAME

info rmation
DELETE
LIBRARY
RMS

available:
DIRECTORY
PURGE
SORT

This is considerably more manageable. Note that some commands,
such as CREATE and EDIT, might appear in the submenu for " editing
files" as well. There is no intrinsic problem with this, as long
as the resul ting menu rema ins small enough so that the user can
find the appr o pr iate command simpl y by scanning the menu and
using a bi t of intui tion. In the example above, inexper ienced
users might confuse the LIBRARY command (which maintains librar
ies of object code) with the DIRECTORY command (which lists
information on disk files), but it is unlikely that they would
choose commands such as DELETE or RENAME. Therefore, the choice
is cut down from a menu so large that it provides more confusion
than help to one that leaves users with only one or two intuitive
choices.

The second problem with standard HELP commands is that users must
be at the system's moni tor level to use them. If one is using a
text editor and desires information on the DIRECTORY command, he
or she must close the currently open file, execute a HELP com
mand, and then go back into the editor. This isa tedious task
and may have to be repeated several times on a CRT terminal,
where information continually scrolls off the user's screen.

Digital Educational Services
Technical Report No. 11

page 6

The UNIX operating system provides a powerful feature that allows
programs to spawn other processes (jobs). This feature is ex
tremely useful for on-line training and documentation because it
allows the current user process to be suspended, the user to go
do something else in a sub proc ess , and then resume the or ig inal
process right where he or she left off. Consider the following
scenario as an illustration:

You are editing a text file that you will "mail" to
another user explaining how to use a new program. You
are writing the directions and forget the exact syntax
of an esoteric command option. Without subprocess
capabilities, you must file your text on disk, exit the
editor program and return to the system's monitor level,
run the utility to check its operation, reenter the
editor, find the place at which you were entering text,
and then continue ed i ting. Wi th subprocess capabil i
ties, you can suspend the editor program, run the pro
gram, and then resume the editing process just as if you
had two separate terminals. This proced ure saves even
more time if the ed ito r ta kes long to load or if yo u
have a number of temporary editing buffers active at the
time.

The ability to spawn subprocesses
computer-assisted instruction (CAl)
following illustration:

is even more
applications.

important
Consider

in
the

When teaching about system utilities, it is always
valuable to have learners do exercises using these
utilities. The courseware typically simulates the
utility so that the user's input and the system's output
can be controlled, and user errors carefully analyzed
and dealt with in an instructionally sound manner. The
problem with this approach is that programming of the
sim ula tor is red undant wi th prog ramm ing of the ut il i ty ,
and any changes in the underlying utility might invali
date the simulation. With subprocesses, users can be
allowed to use "the real thing ", but the i r input can
still be controlled, the system's responses moni tored,
and error messages intercepted and appropriately ex
plained.

This technique allows on-line training to be more tightly inte
grated with the base system than straight simulation.

Dig i tal Ed ucat ional Se rv ices
Technical Report No. 11

Error Messages

page 7

Error messages are one of the most common sources of naive user
misunderstanding because they are usually written for sophisti
cated users. For example, if one types:

$ DELETE ONE.TWO;3

to try to delete a non-existent disk file called "ONE.TWO;3",
VAX/VMS responds:

%DELETE-W-FILNOTDEL, error deleting
DBA3: [HEINES]ONE.TWO;3

-RMS-E-FNF, file not found

The first line of the error message tells what error occurred.
The header information for this line indicates the facility
running at the time the error was generated (the DELETE program) ,
the er ror message sever i ty (W for "warn ing "), and an in ternal
identification of the error message (FILNOTDEL for "file not
deleted"). The third line tells why the error occurred: an RMS
(record management system) error, whose internal error code is
FNF (file not found).

This is a lot of extraneous and confusing information for naive
users, particularly when the text suffices alone:

Error deleting DBA3: [HEINES]ONE.TWO;3
File not found

(Fortunately, a single VAX/VMS command allows just the text to be
presented, without the accompanying headers.)

This technique brings up the issue of programming for specific
target users and ta ilor ing the messages in programs for the i r
level of understanding. One of the popular editors on DEC sys
tems has a two complementary commands: SET NOVICE and SET
EXPERT. These commands set the tone of error messages, respec
tively wordy and long vs. terse and short. Providing both types
avoids having to know the expertise of one's user population, but
it does not avoid having to know the extremes for which one must
provide such messages. That is, one must still ascertain just
how wordy messages have to be for naive users and just how terse
they can be for experienced users. Limited memory and disk
storage on personal computers sometimes prohibi t use of this
technique.

As an al ternative to mul tiple error messages, the system might
refer to the page in the users' manual where an error is dis
cussed in more detail. The on-line message can then be very
concise, with the longer explanation provided in writing. This
type of integration is difficult to achieve in practice, however,
because manuals are not usually fully developed until after the
software code is frozen. In addition, any change in the manual's

Dig i tal Educa t ional Serv ices
Technical Report No. 11

page 8

pag ination would necessi tate a large number of changes in the
system software. One possible solution to this dilemma is to
store the page references in a table that is accessed by the
error routines and can be updated independently.

The PASCAL system developed by the University of California at
San Diego has a beautiful method of helping the user deal with
syntax errors that occur during program compilation. This system
identifies the error, chains directly to the screen-oriented
editor from the compiler, opens the program source file for edit
ing, and positions the cursor directly under the first errant
character. with this approach, the documentation (error mes
sages) are integrated wi th the system in an extremely novel and
useful manner.

Prompting and Orientation

One of the most difficult aspects for naive users is to try to
understand what an applications program is looking for when it is
waiting for user input. Without a general understanding of the
application, naive users find it hard to use their intuition to
decipher many prompts. To illustrate this problem, consider the
following.

As part of the registration process for our CAI courses,
learners are asked to identify themselves by typing a
code name. If they have not yet reg istered, learners
are instructed to simply press the RETURN key wi thout
typing anything else. The act of dec Ld ing whether to
press RETURN or enter a code name turned out to be an
extremely difficult task simply because learners were
not properly prompted. Our first prompt read as fol
lows:

Please identify yourself by typing
your code name below and then
pressing the RETURN key. If you
have not yet registered on this CMI
system and selected a code name,
just press the RETURN key without
typing anything else.

Your code name?

When this prompt was used, both types of mistakes were
made: new students tr ied to type code names and pre
viously reg istered students pressed the RETURN key. We
found, however, that new students made far more errors

Digital Educational Services
Technical Report No. 11

page 9

than previously registered ones. We therefore empha
si zed the action requi red of new students by enclosing
this in a box and wording the instruction as follows:

+----------------------------------+
I Press RETURN if you have not yet I
I registered for this course. I
+----------------------------------+

Otherwise, identify yourself by
typing your code name. Then press
RETURN.

Your code name?

The box helped considerably, but
instr uc tions were st i 11 too word y.
number of words again:

we found that the
So we cut down the

+----------------------------------+
I Press RETURN to enter the course I
I for the first time. I
+----------------------------------+

Otherwise, type your code name:

When this prompt was used, the number of errors dropped
to near zero, indicating that the format allowed even
new users to intuitively understand what the system
wanted them to do.

A complementary problem to knowing what to type is knowing when
to type it. Most systems have at least two 1 evels: the system
monitor and application programs. For example, one can't use
editor commands when sitting in the monitor, nor monitor commands
in the editor. This problem is particularly evident when in
structing naive users in BASIC programming. It seems to take
them a while to realize they must be "in BASIC" before typing
program lines, and that they must "exit BASIC" before performing
system functions such as copying a file. This confusion occurs
even with BASIC printing "Ready" as a user prompt and the monitor
using a character prompt such as $, >, or].

These prompting problems relate to the more general problem of
system orientation, an issue with small systems as well as large
ones. Personal computer users forget which disks they have
inser ted, which mode they are in (text 0 r graph ics), and even

Digital Educational Services page 10
Technical Report No. 11

which application they are running (particularly when they may
have two or more editors available) •

Again, these problems are even more important when one tries to
[put training and documentation on-line. With paper documenta
tion, users can orient themselves via page numbers, running
heads, and even how far along they are in the manual. That is,
users always know how much more they have to read just by noting
their place in the manual. This isn't true with on-line training
and documentation: if the screen simply says "Press RETURN to
continue", users have no way of knowing how many times they'll
have to do that before they complete the current section.

Several techniques can be used to improve orientation. The
simplest is to identify relevant information in some fixed por
tion of the screen, such as the upper right-hand corner. This is
the equivalent of running heads in paper-based documentation.
One might identify the label of the current disk, the screen mode
(text v s , graphics), and the name of the current application.
The important point is to provide only that information which is
relevant to the user, and to keep this information clear enough
for naive users to understand. Nothing is quite so frustrating
as to ask, "What's that mean?" and to be told "Oh, don't worry
about that."

Another technique is to color code titles and other header infor
mation to provide visual clues to one's whereabouts. On black
and white terminals, one might be different type styles, differ
ent screen formats, or some other clues to provide orientation.
The important point is simply to give users some indication of
where they are so they don't get lost in a HELP sequence tr ying
to figure out that they have to press RETURN before the system
will recognize the command being discussed in the help sequence.

A third technique is to change the actual prompt that appears
when the system is wa i ting for input. We have found that single
1 ine prompts are super io r to ones tha t appear above the user's
input. For example, most BASICs simply print:

Ready

(followed by a carriage return line feed pair) to identify them
selves and indicate that the system is waiting for additional
user input. A better approach would be to prompt users like
this:

BASIC >

(without the carriage return line feed pair) and have users type
their next command or statement right after the >. This assures
that the user realizes that the prompt is a prompt and not part
of any previous output.

Digital Educational Services
Technical Report No. 11

page 11

This "labelled prompt"
appl ication programs.
that they should type
name:

Accounts Payable>

technique can be very effective with
Instead of just expecting users to know
something, prompt them wi th the prog ram

This assures that users know not only when input is required, but
also gives them a hint as to what input is required. The beauty
of this technique is that it works well with both naive and
experienced users: it is informative yet very concise, and
orients the naive user without getting in the experienced user's
way.

Windowing

All of the techniques discussed above relate to how users access
information and the style in which that information should be
presented. Attention to such details can contribute greatly to
simplifying personal computers and making them more approachable.
But no matter how much human engineering one builds in, computer
systems will never be as intui tive as the common appl iances
because computers are just too complicated to expect that all of
their functions can be used effectively by any Tom, Dick, or
Harry without adequate training and documentation. HELP will
always be needed, and the jobs of today's trainers are quite
secure.

Given knowledge of what users need to know, how that information
will be accessed, and the style in which it will be presented,
the problem becomes one of designing how training and documenta
tion should be displayed on the user's screen.

There are two basic options: one can erase the user's screen
before he or she accesses on-line training or documentation, or
one can present the training or documentation in a "window" in a
defined area of the screen. The first option certainly simpli
fies programming, but it has a very important disadvantage: if a
user makes an error and tries to use on-line training or documen
tation to understand the source of that error, the error will be
erased while the explanation is being given. The second option
not only avoids this problem, but is especially useful when
combined wi th subprocesses so that users can, in effect, run a
number of virtual terminals from a single terminal. Note that
these are interactive virtual terminals, unlike those spawned by
submitting jobs to batch processors.

Windowing is not a new technique. It has been used on Small talk
at Xerox PARC, has been the subject of intense study by the
Computer Science Department at Brown University, and is an inte
gral part of Apollo computer systems. In these cases, windowing
has basically been used for interactively controlling independent
subprocesses. What is proposed here, however, is to use window-

Digital Educational Services
Technical Report No. 11

page 12

ing to provide users with training and documentation in such a
manner as to let them maintain their current job or task context
while the requested information is being displayed.

The ideal approach is to make the system services needed to sup
port windowing an integral part of the operating system. This
avoids having to program them into every application independent
ly. With this capability, on-line training and documentation
automatically become integral parts of the system because they
are callable from any application.

CONSIDERATIONS

The techniques discussed in this paper are not without cost
ramifications. Some of considerations in employing these techni
ques are as follows.

• Extensive HELP and CAl facilities require a consider
able disk space.

• Subprocesses and windowing require enough memory for
a sophisticated operating system.

• Creative error recovery techniques require enough CPU
power to prov ide human-eng ineer ing wi thout aversely
affecting system performance.

• Clarity of communication requires screen and graphic
capabilities to provide effective prompting and
orientation.

• Human engineering is a development cost in itself.

All of these techniques require trade-offs. No matter how big a
system is, one can always deteriorate its performance by adding a
large enough amount of overhead. Just how much one can afford to
integrate training and documentation with a system may depend
heav i1 y on one's mar ket. El im ina t ion of human-eng ineer i ng wi 11
allow one to manufacture hardware and software cheaper, but the
resultant product may not be adequate for specific classes of
users.

The problem is not usually in determining how many of these
features one can afford to provide, but rather which ones one
can't afford not to provide. Inadequate training and documenta
tion will decrease the usability of personal computers and in
crease the providers' support costs.

Digital Educational Services
Technical Report No. 11

page 13

This paper indicates some of the techniques that can be used to
increase the intui tiveness of computer systems and thereby in
crease their ease of use. The discussion is neither in-depth nor
exhaustive. Yet the basic premise is clear: training and docu
mentation must become integral parts of personal computers if
these val uable tools are to become ubiqui tous appl iances in the
office environment.

ACKNOWLEDGEMENTS

Michael Zimmerman of Digital Equipment Corporation was instrumen
tal in developing several of the ideas presented in this paper,
particularly those relating to subprocesses. Roger Bowker of
Digital increased the author's sensitivity to the power of word
ing and text layout to increase the efficiency of communication.
Victor Bunderson of WICAT, Inc. and Wendy Mackay of Digital
stimulated the thinking on orientation. Andries van Dam, Steve
Feiner, and Norm Meyerowitz of Brown University contributed
heavily to the idea~ on windowing.

