
THE IMPLICATIONS OF WINDOW MANAGEMENT
FOR COMPUTER-BASED TRAINING

Technical Repo rt No. 10

August 1981

DIGITAL EQUIPMENT CORPORATION
EDUCATIONAl SERVICES

11 Crosby Drive
Bedford. Massachusetts 01730

This Technical Report may be copied
for non-commercial purposes with
credit to the authors and Digital
Equipment Corporation.

THE IMPLICATIONS OF WINDOW MANAGEMENT
FOR COMPUTER-BASED INSTRUCTION

Michael J. Zimmerman
Jesse M. Heines

ABSTRACT

This paper represents the final report of a Computer-Based Course
Development research project known as the Interactive Video
Communication Network. It discusses the application of windowing
and split processing techniques to the development of CBI course
ware.

Digital Educational Services
Technical Repo rt No. HI

THE NEED FOR WINDOW MANAGEMENT IN CBI

The Development of EDTCAI

page 1

Early in the summer of 198~, Educational Services' Computer-Based
Course Development Group in Bedford produced EDTCAI, an introduc
tory, computer-assisted instruction (CAl) course that teaches how
to use EDT, the DEC standard editor. The course serves to orient
users to the basic features of EDT, including line mode, where
text is entered line by line, and the new keypad mode, in which
users see the document on their terminal screens and can modify
it in much the same way that one would modify a paper document,
e.g., deleting words, sentences, inserting new lines, and so
fo r t h , In EDT ke ypad mode, the keypad ke ys are assoc i ated wi th
editing functions similar to those that had been previously
developed for the KED editor on RTll systems. EDTCAI not only
provides an explanation of the editing function, but, in the
context of exercises, allows users to "try" certain commands and
then to watch their results as a simulated editor moves lines,
deletes words, or does whatever the particular commands request.

We encountered several problems when analyzing students'
for the line mode exercises:

input

• First, there were usually a variety of abbreviations for
the basic command itself.

• Second, there was an even wider range of possibilities
for the syntax of the command with its reference to EDT
line numbers.

The solution to these types of problems is generally to have a
programmer construct a "parser" which would check the input
answer against a table of acceptable values. This is, in fact,
just what the editor does itself. The problem with this approach
is that there is almost always another alternate variation which
was overlooked and omitted from the table. In addition, as the
EDT editor itself was developed in later versions, these syntax
rules broadened, and in some cases, changed.

One consequence of this approach is that an accurate parsing
table begins to approach the size of the real one used in the
editor itself. Our answer to this problem was to make the exer
cises so specific that they began to lose credibility as a
"model" of the editor. Nevertheless, the benefits of a graphic
simulation resulting from an acceptable answer provided a strong
conceptual basis for an understanding of the editor itself,
assuming that the student was able to find an acceptable answer.

The difficulties in parsing line mode commands were further com
pounded when we attempted to simulate the visual keypad editor.
Each key command, as it is pressed, results in a corresponding

Dig i tal Ed ucat ional Se rv ices
Te c h n i cal Repo r t No. 10

page 2

action in the editor. Moving from the one dimensioDality of line
mode commands to the two dimensionality of keypad screen commands
results in a dramatic mUltiplying of the parsing problem. Moving
from one point on the screen to another can be accomplished in
literally an infinite number of ways. Using the "seven league
boots" of the keypad keys to move forward and backwards by words
and lines provided a significant exercise in logistics. Namely,
we had to keep a road map of what the text looked like and con
stantly calculate the position, because the action to be taken
depended upon where one was when the keypad key was pressed. Now
if we start to alter the text itself in any way, we have to
revise and update the road map. This sort of programming begins
to approach the functionality of the editor itself and indeed the
editor is far better at doing that sort of thing than our CAl
courses are, since that is all the editor is supposed to be
do ing •

Simulating the Editor

When you begin to consider the vast multitude of "undocumented
features" in the real editor, subtle changes with new versions,
not to mention the programmer's labor creating parsing tables and
programming models, it was not a large step to put on our own
"seven league boots" and try to use the EDT editor to "simulate"
itself in keypad mode. The simulation centers around suitably
restricting the functionality of the keypad editor keys so that
dangerous and undesired keys have little or no effect. With one
fell swoop we can furlough our programmer, synchronize editor
version updates (the editor is always itself), and immunize
ourselves against programming errors.

This jump is not without its consequences. In the real editor,
there is little opportunity for feedback to the student other
than directly showing the consequences of the editing action.
Furthermore, if the student destroys the text beyond recognition,
there must be ways to get help and begin again or return to the
CAl instruction for more coaching. In addition, there is little
way to know whether or not the student was successful, much less
where and what problems arose with his or her editing session.
This problem of passing back information is inherent in the
VAX/VMS design.

A CAl course and an editor are both run in something called a
"process" which has a process context called an "image". When
VAX/VMS switches images (as it must in going from the course to
the editor), it necessarily loses image context. It can only do
one thing at one time and it has a very short term memory for
what it just did. We can keep track of where in the course the
student is working and file this information before moving into
the editor. However, once in the editor there is limited ability
to "branch based on feedback" or to do the thing that CAl does
best. Students are, so to speak, on their own. This particular

Digital Educational Services
Te c h n i c a I Repo r t No. I fl

page 3

approach has been implemented in the VMSCAI course due to be re
leased with a future update of VAX/VMS.

One solution would be to control the visual output on the termi
nal so that the "context" remains at least in part on the screen,
and the editor is restricted to, say, the lower right-hand quar
ter. Thus, the instruction, advice, and any helpful hints from
the CAl course remain in the top and left portion of the screen
with perhaps a picture of the keypad functionality for students
to view as they work with the editor. This sort of solution is
still on our wish list. It places special and specific demands
on being able to do two separate things and merge the output.
The implications of this are enormous. But for the moment, let
us back up and consider a reverse situation, namely, moving from
the utility image to its on-line documentation (HELP).

The HELP Analogy

Most software on VAX/VMS has on-line documentation (HELP) avail
able which will coach users through a problem. In most cases,
the information sought is presented in such a way that the user's
previous context is not disturbed. In almost all cases, software
utility HELP functions in an encyclopedic manner. The highest
level lists the HELP syntax and its keywords. This is accessed
by simpl y typing "HELP". The next level generally returns up to
a full viewing page of information, with a possible second level
of keywords, and so on. In most cases this suffices. (However,
if the user is totally naive to the software and the system, he
or she may not even know to type "HELP".) In EDT I ine mode, one
must type "HELP CHANGE KEYPAD" to access the only reference
(three levels deep) to the keypad HELP key (see Figure 1).
Unfo rtunatel y, typing the more obvious II HELP CHANGE SUBCOMMANDS
HELP" does not tell yo u whi ch ke y to press (see Fig ure 2).

Ho wever, to enter the wor d "HELP" in change mode, yo u must be in
nokeypad mode, and the diagram that HELP produces in nokeypad
mode refers to keys that do not function in this mode. In keypad
mode one must already know which key to press to access the
diagram which tells you that that key is the one for HELP. The
tacit assumption is that one has a hard copy of the keypad
diagram at hand. Indeed, this is a fundamental problem in the
design of keypads for on-line documentation and instruction, and
indeed, this turned out to be a classic error in EDTCAI. The
fact is that almost all EDTCAI users did not have the hard copy
User's Guide available containing a keypad diagram. It is
possible to generate the hard copy diagram in EDT, but one must
be something of a DCL and EDT wizard to do so. Perhaps some
thought is due to having on-line documentation (HELP) and
instruction (CAl) generate their own hard copy, at least for
things like keypad diagrams.

Digital Educational Services
Te c h n i cal Re po r t No. HJ

CIMCE

KEYPAD

You enter the kE!!tpad subMade of c:hange MOde "*' !lour terMinal is a
VT52 or VTtte and the kEYPAD option is on. <This option is on b!f
dehult.) In this 5UbMDde, the terMinal SCr&e'I is usad iI5 a window
into the text buffer. Characters tHped on the Main ke!fboard are
inserted into the buffer at the cursor position. You enter editing
COfIIlMiInds by using k.II!Is on ttw auxilia"1f kAIg~, or control k.II!Is on ttw
Main ke!tboard.

For MOre help on k~~ MOde, type CfWCE to 8nter that MOde, Use ttw
I'-E!!tpad ..e..P facility as follows:

1. If' your terMinal is a VT1M, press ttw k.II!Ip.cf k.II!I lUrked
·PF2·,

2. I f your terMinal is a vn52, press the red kAlgp.ld k.II!I.

Figure 1

TI£ ..e..P t£SSAGE GEt£RATED BY Tt£ <XItWfl)
.I£LP QfANGE ICEYPAD·

CHANGE

SUBCOtI1ANDS

I£LP

The ..e..P COMMand causes a diagr_ of keHpad functions and CONTROL ke!f
descriptions to appear on ttw screen. If executed in k~pad c:Nnge
MOde, additional infOrMation can be obtainad b!f pressing k8!fp.ld or
control ke!ts; in nake!tpad MOde, pressing q subsequent ke!f returns
to editing MOde.

Figure 2

TI£ tRP t£SSA(;E GENERATED BY TI£ COttMD
-I£LP QfANGE SUBCOttWmS ..e..P.

page 4

Digital Educational Services
Te c h n i cal Re po r t No. 1121

page 5

The moral here is that you can never assume the existence of
available hard copy with CAl instruction. Yet the naive user
desperately needs to have a bridge between the instruction and
the software tool. CAl can provide that bridge explicitly if it
can window the software tool into the terminal screen. Further
more, If the two processes can function simultaneously, the input
can be piped to both processes and, in the case in question, the
editor would do its thing in the lower right quadrant, while the
CAl course would provide the necessary feedback in the remainder
of the screen.

These considerations led us to investigate the problems and
practicality of windowing in a multiprocess environment.

THE DEVELOPMENT OF PROTOTYPE
WINDOWING SOFTWARE FOR CBI

Window Management at Brown University

The Computer Science Department at Brown University had done
extensive work with window management and split processes on a
VAX 11/780 running under the UNIX operating system [1]. After
tracing down various internal developnental projects on windowing
and multiprocesses, we contacted Greg O'Brien who was working on
a windowing problem with a RAND editor and who was also familiar
with UNIX. We all made the trip to Brown University where Dr.
van Dam and his students demonstrated the VAX/UNIX software on a
RamTech display.

The question was whether this was possible on VAX/VMS with a
VT100 terminal. UNIX is Bell Telephone's version of what an
operating system should be like. VMS is, of course, DEC's sys
tem, specifically designed for the VAX 11/780. Although there
are considerable differences between UNIX and VMS, it seemed
likely that if windowing could be done on a VAX using UNIX, it
should also be able to be done using VMS. We obtained many
conflicting opinions on this question, and decided to pursue our
involvement with Brown based on our belief that we could learn
about windowing techniques from them while trying to resolve the
VMS implementation problems within DEC.

[1] Th e b ul k 0 f th i s wo r k wa s
Meyrowitz, and Margaret
Andries van Dam.

done
Moser

by Steve Feiner, Norman
under the direction of Dr.

Dig i tal Educational Se rv ices
Te c h n i cal Repo r t No. Ie

page 6

Window Management on VAX!VMS

The problem really splits into two separate but related problems:

(1) how to split a process to effectively do two things at
once and yet be in control of both, and

(2) how to control the process output or, in our terms, how
to window.

To this effect, we wrote multiprocess software that enabled the
user to window and control one or more additional processes or
subprocesses from the user's terminal. Appendix A presents a DeL
command procedure which controls the subprocess, causing (among
other things) the sUbprocess to prompt with its name. Appendix B
presents a· DeL command procedure which extends the previous
approach and allows the user to window the output at the
terminal. If run from the main process, this DCL command
procedure allows the main process to summon or sleep the various
sub processes. If run from a sub process, it control s the 0 utput
format from that subprocess by using the scrolling region feature
of the VTle0 terminal and windowing the first subprocess to the
top half and the second sUbprocess to the bottom half of the
terminal. A third or fourth subprocess would be presented in the
bottom third or fourth of the screen with the other two
outputting to their respective thirds or fourths.

Actually, both of these DeL command procedures are simplifica
tions of a third pair of interconnected command procedures which
used DECNET from a sUbprocess to login to a completely new pro
cess. This was the only way to create and control multiple
interactive main processes. These two interrelated DeL command
procedures allowed two or more entirely different users and user
accounts running in main processes to share the same terminal
each with its own horizontal strip similar to the output from the
command procedure in Appendix B. However, recent changes with
Phase III DECNET have restricted the variety of DeL commands that
the user is able to use through the network from a subprocess
without extending certain quotas or adding certain process privi
leges.

Although we will not present this last pair of command proce
dures, we will discuss certain aspects in their development, and
copies are available from Michael Zimmerman upon request. The
other software is presented in the Appendices and discussed
below.

The VMS RUN command allows the user to create a subprocess to
execute a particular image. (An image is an executable program.)
In this creation process, the user can specify where the input
data for that image comes from and where the output data stream
and error messages are to go. These data streams are called
SYS$INPUT, SYS$OUTPUT, and SYS$ERROR. They are "logical names"

Digital Educational Services
Te c h n i cal Repo r t No. 10

and each refers specifically to a file.

page 7

When you first login to the system, the system creates a process
and then runs an image called LOGINOUT which "sets up house" for
your session. Process creation will assign the logical names
(all those shown in Table 1 except SYS$LOGIN and SYS$COMMAND),
but LOGINOUT makes the data streams "process permanent", that is,
permanently open for the life of your process. LOGINOUT also
adds one more logical name, SYS$COMMAND, which will have the same
assignment as the original SYS$INPUT assignment.

LOGINOUT

It is LOGINOUT that actually prompts you for your Username and
password, then welcomes you to the system with a mea saq e , and
modifies the created process with your username, process name,
UIC, privileges, quotas, default directory (SYS$LOGIN), and a few
other things. But most important, LOGINOUT maps a command lan
guage interpreter into your process space. This interpreter
enables you to use a command language to talk to the system.
Furthermore, your process does not terminate when the image exits
(as it does with any other image). That is, LOGINOUT creates and
assigns these logical names to process permanent files (TTAl in
the case above) so that the system can keep continuously track of
where to get the input, where to send the output and error mes
sages, and finally since overall monitoring and control is impor-

Table 1

CONTENTS OF PROCESS LOGICAL NAME TABLE

Log ical Name

SYS$INPUT
SYS$OUTPUT
TT
SYS$DISK
SYS$COMMAND
SYS$ERROR
SYS$LOGIN

Actual Device

TTA1:
TTAl:

-TTAl:
DBAl:

TTAl:
-TTAI:
DBAI: [USER]

TTAl is a particular designation for the
user's terminal, DBAI is the system name for
the user's disk, and [USER] represents the
directory where the user is upon logging in.

Dig i tal Educational Se rv ices
Te c h n i cal Repo r t No. 10

page 8

tant in a continuous interactive process, where to go for help
(SYS$COMMAND) in case something goes awry.

You can run LOGINOUT to map the command interpreter into the
process space, specifying a OCL command procedure for the input
file and a name for the output file:

RUN SYS$SYSTEM:LOGINOUT/INPUT=infile.spc/OUTPUT=outfile.spc

where "infile .spc" represents a OCL command procedure file, and
"outfile.spc" is the name of an output file to be created.

A OCL or "command procedure file" is something like a program
because the system will execute the lines in the file sequential
ly as if they had been typed at the user's terminal. However,
each line in the OCL command file can execute its own image.
When the last line of the command procedure is reached, the
process logs itself out and stops. Although the subprocess is
now gone, this still gives the user a way to execute a series of
images in a subprocess.

Now suppose that the input command procedure discussed above
would prompt the user for a OCL command, then execute that com
mand, and then return again to prompt for another command. This
would constitute an interactive looping command procedure as
shown in Figure 3. If the user-supplied command itself requires
user input, an extra command line must be added as shown in
Appendix A.

Running LOGINOUT with the input assigned to an interactive loop
ing command procedure file which requests input from the user,
then executes that input and loops back to request input again,
seemed to be a safe bet. However, the OCL INQUIRE command looks
toward the original SYS$COMMAND assignment for its input. Cer
tain OCL commands (like the INQUIRE command) need this original
command orientation to be the user's terminal in order to func
tion. In a subprocess running LOGINOUT and inputting an inter
active command procedure file to LOGINOUT, the process logical
names are as shown in Table 2.

SYS$COMMAND (like SYS$INPUT) is originally assigned to the disk
command procedure file. A reassignment of SYS$COMMAND within a
command procedure has no effect. It was set originally when
LOGINOUT was run and it is this original setting that determines
where INQUIRE will prompt. The system does not bother to look
and see where you have reassigned it in the meantime. We were
trapped within the confines of the structured levels of DCL
command procedures. There was one exception, although it
involved an obscure use of DECNET.

Digital Educational Services
Techni cal Repo rt No. 10

page 9

! inquires for DeL COMMand
! frOM SYSt~
! substitutes & executes
! what you gave it
! returns to the INQUIRE
! for the next <:oMIIland

'aJtWI)

(;()TO L()(P

t ! This interactive looping COMMand procedure file
t ! called COttWII>.COI1 will DI'lI~ work if' SYStCCIttAND
t ! was originally assigned to the user's terMinal.
t
t L()(P: INlIJIRE aJtWG) "t
t
t
t
t•

Figure 3

AN INTERACTIVE LOCFING COttfAND PROCEDt.RE

Table 2

PROCESS PERMANENT LOGICAL NAMES FOR A SUBPROCESS RUNNING
LOGINOUT WITH A COMMAND PROCEDURE INPUT (COMMAND. COM)

Log ical Name Actual Device

SYS$INPUT
SYS$OUTPUT
TT
SYS $DISK
SYS $COMMAND
SYS$ERROR

DBA1:
-DBAl:
-DBAl:
DBAl: rUSER] COMMAND. COM

DBA1:
-DBA1 :

Dig i tal Educational Se rv ices
Technical Repo rt No. HI

Splitting Processes through DECNET

page Ie

If yo u are connected to a netwo r k, VAX/VMS DECNET a llows yo u to
SET HOST to a different computer and operate there exactly as if
you are on that system. (You must, of course, have an accessible
account on that system to do this.) The new system prompts for a
"Username" and "Passwo r d " and then welcomes yo u to that system.
In the meantime, the originating process is kept "on ice" in a
process called RTPAD, which passes the keyboard input out to the
other system and then dutifully writes the output from that other
system on your terminal screen.

The network software then may be used to log in again on your
original system. Why not just log out and log in again? The
answer is that your original process in RTPAD preserves part of
your process context, including directory default, logical names,
symbols, etc., and even your place in a command procedure. Using
this technique you may, so to speak, teleport yourself and return
to check out a command procedure from a different point of view.

The RTPAD image allows you to reenter the system in a second
process, and as it does, it checks the logical assignment of
SYS$COMMAND. Thus, the desired effect can be produced by cre
ating a sUbprocess through DECNET with LOGINOUT input assigned to
a command procedure containing a SYS$COMMAND assignment to the
user's terminal and a DeL SET HOST command. You cannot gain
command of the subprocess, but you can use it to run RTPAD and
log back into your own system. You can even supply a username
and password in the command procedure file. All of a sudden, you
get two processes making alternate input requests, each with a
"$" prompt.

The process of controlling this input prompt and the subsequent
process output was achieved for VT100 terminals with yet another
command procedure (somewhat like that in Appendix B) which caused
one of the processes to become inactive while it waits for a cue
from the other process. That cue was the existence of an empty
file with a special name and type and version number which the
new main process recognized. The existence of that file in a
designated directory enables the process to prompt for input in
the desired portion of the VTlee terminal screen using that
terminal's scrolling feature. The command procedure printed an
identifying header with relevant information at the top of its
region, prompted for input, redefined the scrolling region,
executed it, and finally checked for the existence of that
enabling file and, if it existed, looped back for more input.
Otherwise, it kept checking every second for that file to
materialize. The procedure was generalizable to more than two
processes. However, an error in the RTPAD software would cause a
system failure under certain circumstances.

It was the interpl ay between the 'two command procedures that kept
things going and the existence of the directory and file that

Digital Educational Services
Technical Report No. 1e

page 11

I

enabled the variou~ processes to "communicate" with each other.
The existence of the file with the proper name, extension, and
version number enabled that process to prompt on the terminal.
The first command procedure controlled the windowing and defined
the DeL symbols referring to the second command procedure which
did the process creating and interprocess controlling by way of
file creation and deletion.

Splitting Processes in Other Ways

One of the drawbacks with the previous arrangement was the high
overhead and demand on system resources. Each extra user
commandab1e process requires the creation of two more processes:
the first to SET HOST to the second, a DECNET main process. In
addition, DECNET itself tends to require a lot of system re
sources.

The CONTROL/Y key (CONTROL key and Y key pressed simultaneously)
is commonly known functionally as an abort key. It acts as an
interrupt of the process, and a return to command level prompt.
The EDTCAI course disengaged the functionality of this key so
that students could not accidently abort the course. This was a
mistake. Some students found themselves helplessly lost in the
maze of modules with no clear idea of how to return to monitor
level. Standard across-the-board functionality, such as a uni
versal HELP key colored red or a universal ABORT/EXIT procedure,
is highly recommended. It is less well known that the user can
return to that image with a "CONTINUE" DCL command, provided that
no new command is executed that runs an image. There are a
limited number of DeL commands that do not run an image, and
these are listed in Table 3.

Table 3

DCL COMMANDS THAT DO NOT RUN AN IMAGE

ALLOCATE
CONTINUE
DEFINE
EXAMINE
INQUIRE
SET DEFAULT
SET UIC
SHOW QUOTA
SHOW SYMBOL
WAIT

ASSIGN
DEALLOCATE
DELETE/SYMBOL
GOTO
OPEN
SET PROTECTION/DEFAULT
SHOW DAYTIME
SHOW PROTECTION
SHOWTIME
WRITE

CLOSE
DEASSIGN
DEPOSIT
IF
READ
SET VERIFY
SHOW DEFAULT
SHOW STATUS
SHOW TRANSLATION

Digital Educational Services
Techni cal Repo rt No. Iii!

page 12

VMS developnent promises to add another:. a SPAWN command to
enable the user to "clone" his or her processes context, so to
speak, thus creating a subprocess in which another image or a
series of images could be run without affecting the parent proc
ess. The user could return at any time to the parent and con
tinue the process image there.

This would be very useful from our point of view.
CBCD procedure is to:

The current

(1) create a temporary file containing relevant status data
before leaving the CAl course,

(2) exit the course via a LIB$DOCOMMAND system service call
to a command procedure which runs the utility, and

(3) then run the CAl course again but starting the user
approximately where he or she left off based on the
status information in the temporary file.

This procedure works well for our new VMSCAI course and should
also serve well in the revised EDTCAIcourse. However, if we can
have our way, we would like both processes to exist, interpreting
student input. The utility would show what actually happens and
the CAl course would give the feedback. Although SPAWN would not
actually be able to do this, a system service call to a LIB$SPAWN
might work with the right programming interface.

Further Software Modifications

In some respects we have
procedure in Appendix
HOST in the subprocess.
with the command:

the SPAWN command now with the command
A. It is actually not necessary to SET
Subprocesses can be created directly

RUN SYS$S YSTEM: LOGINOUT/INPUT=TTAI :/OUTPUT=TTAl:

Such subprocesses are full y interactive. The process permanent
logical names shown in Table 4 attest to that. The problem now
lies only with the windowing. The interacting pair of command
procedures were rewritten into one command procedure to take
advantage of this new feature.

This revised command procedure is shown in Appendix B. The
visible result is almost identical to that for the original pair.
Each subprocess prompts in its window after checking to see if it
is enabled to inquire. One difference is that the users are able
to name the subprocesses themselves and that each subprocess then
prompts with its name (2].

Another difference is that the main process acts only to switch
among the sUbprocesses. CONTROL/Y is used to wake the main

Digital Educational Services
Techni cal Repo rt No. 10

page 13

process which then deletes and/or creates the files necessary for
the subprocess to prompt. In this manner, as many sUbprocesses
as is physically possible could be formatted on the VT10~ termi
nal screen.

If we forego the windowing effect (which works only for VT100
terminals) , we may settle far the command procedure in Appendix A
which, instead of the existence of an enabling file, uses the OCL
WAIT command. This command will put a process to sleep for the
specified amount of time. The process can, however, be awakened
with a CONTROL/Yo Furthermore, if that process is executing a
command procedure, the user can specify a response to the
CONTROL/Yo

If we make the sUbprocess prompt with its name, execute the
inputted command, and then loop back and continue to prompt and
execute as long as there is real input (it goes to sleep with
just a <RETURN», this subprocess can serve to perform tasks that
the main process is unable to do if it is running an image.

Table 4

PROCESS PERMANENT LOGICAL NAMES FOR A SUBPROCESS WITH
INPUT AND OUTPUT ASSIGNED DIRECTLY TO THE USER'S TERMINAL

Log ical Name

SYS$INPUT
SYS$OUTPUT
TT
SYS$DISK
SYS$COMMAND
SYSSERROR

Actual Device

TTAl:
-TTAl:
-TTA1:
DBAl:

TTAl:
-TTAl:

[2] Process names should be be unique within groups on VAX/VMS.
Users on the system belong to a group with a group number
identifying that group. The user identification control
(UIC) is a number consi sting of two parts: a group number
and a member number. In the revised command procedure, the
file used for communicating between the subprocesses has a
name corresponding to the process name, and a version number
corresponding to the user UIC member number. This helps
solve the problem that previously resulted if more than one
person used the software referring to the same files in the
same di rectory.

Digital Educational Services
Te c h n i cal Repo r t No. 1e

pag e 14

Fo r example, if users are annoyed by messages appearing on the
screen while they are in the editor, they may summon the
subprocess with a CONTROL/Y, have it SET TERMINAL/NOBROADCAST,
continue when the main process prompts again, and then "<RETURN>"
to sleep the subprocess. CONTROL/W refreshes the screen and the
user is exactly where he or she had been before with no loss in
process context.

Similarly, the user might wish to TALK to another user or reply
to another user who wished to TALK to him or her. If an image is
currently running, the user can:

(1) interrupt that image and wake the subprocess with a
CONTROL/Y,

(2) sleep that main process with a WAIT 1 (wait one hour) ,

(3) TALK to the other user through the subprocess,

(4) type another CONTROL/Y when he or she is finished
talking to wake up the main process, and then whichever
prompts first,

(5) press <RETURN> to sleep the subprocess,

(6) type CONTINUE to return to the original image, and

(7) type CONTROL/W to refresh the original image.

Appendix A presents a command procedure for a subprocess which
will do precisely this. This command procedure is independent of
the type of terminal. The affect of this command procedure is
related to the goal of SPAWN, except that certain parts of the
process context are not cloned. Users can, however, create their
own contexts in the subprocess by executing their LOGIN. COM files
or using some other technique. They can keep the subprocess
awake as long as it is getting input. As soon as it receives a
<RETURN> for input, it goes back to sleep.

The situation is almost completely symmetrical. The main process
can perform in the same manner. Either process will return to
the "$" prompt with the OCL EXIT or STOP command. All sleeping
processes and subprocesses will wake and prompt (in somewhat ran
dom order) wth a CONTROL/Y input. However, it is only the main
process which can stop the subprocess (with STOP "subprocess
name"). The d i fficul ty of not being able to leave EDTCAI wi th a
CONTROL/Y is solved if the user enters the course from a subpro
cess and wakes the sleeping main process to stop the subprocess .•

Other uses involve switching between a foreground and background
process (sayan editor and OCL to compile link and execute a
program) such that exiting and reentering the foreground process
is accomplished using CONTROLIY and WAIT. The image is saved so

Digital Educational Services
Technical Repo rt No. HI

page 15

that reentry is exactly at the exit point with all context pre
served.

CONC LUS IONS

In some respects, we are much closer to our final goals than it
may at first appear, because we can sequentially execute differ
ent images by switching between the utility and the CAl course
about the utility. The technique of storing the relevant data
from the CAl course in a temporary file before leaving the course
has another dividend: while this procedure enables subsequent
reentry into the course at the exit point, it could also be
employed to place a user into a CAl course at a specific point
based on the desired content. Thus, in a manner similar to
on-line HELP, on-line LEARN might be made available to access the
appropriate section of the CAl course for specific instruction.
If this instruction was presented in a subprocess, the original
process context would not be lost. These capabilities exist now.
The central focus for growth now seems to lie with windowing.

Since the demonstration last fall, Brown University has been able
to window on any type of terminal under their VAX/UNIX system.
This includes the familiar VT100 terminal. The results of their
work are published in a paper called "BRUWIN: An Adaptable Design
Strategy for Window Manager/Vi rtual Terminal System" by Norman
Meyrowitz and Margaret Moser. We visited Brown again this spring
to see their recent developnental work. This work is in a
general setting, but its consequences are clear: multiprocess
windowed output is not only possible but also highly desirable
fo r 0 ur CA I wo r k •

As students make the transition from a controlled CAl environment
to the actual utility, there is necessarily a qualitative discon
tinuity. While users may make this jump only once for each
subject or utility they learn, it is nevertheless psychologically
very significant. Using the "real thing" has infinitely more
impact than the simulation does. We are primarily concerned with
easing the problems encountered with this transition. As the
distinction between on-line documentation and on-line training
becomes more obscure, the gap that lies between CAl and the
utility it is teaching should disappear, allowing interactive
training to become an integral part of the user's entire on-line
env ironment.

Digital Educational Services
Te c h n i cal Repo r t No. 10

Appendix A

SUBPROCESS CONTROL

page 16

This is a command procedure for all terminals and all processes
and subprocess created with the the symbol SBPC which is defined
in this command procedure. It distinguishes the subprocess from
the main process by making the subprocess (or main process)
prompt wi th its name: "{ subprocess name}: II verses "$ ".

This command procedure is an interactive loop for a subprocess
created from the main process with the symbol SBPC. A subprocess
running in this interactive loop can help run errands for you
when you are otherwise occupied in executing an image, the editor
for example. Normally the subprocess sleeps. It prompts with
the sub process nam e that yo u give it. You wa ke it wi th a
CONTROL/Y and you sleep again it with just a <RETURN>. As long
as you give it a series of commands it will execute images like
TALK or MAIL that do not interfere with the main process image.
In the mean time the main process will prompt on the terminal
screen with a "$". Tell your main process to sleep with the DCL
WAIT 1 command. This puts it main process to sleep while you
work with the subprocess, and it doesn't destroy the main process
image. When you are finished, a CONTROL/Y will wake the main
process whi ch wi 11 prom pt wi th a "$". Us e the DC L II CONTINUE" to
get back your original image in the main process. When the
subprocess prompts ag ain wi th its subprocess name, just press
<RETURN> and it returns to its waiting state.

You must first create the subprocess from the main process with
the symbol SBPC. Normally you won't have this symbol defined.
When you logon you have only your main process prompting with its
"$". If you run this command procedure from your main process,
it will prompt you with your main process name. This will also
define the symbol SBPC so that you can use it to create a new
sUbprocesses. When the main process prompts the first time with
its name, type SBPC to create the subprocess. When it prompts a
second time, then just press <RETURN>.

It will be out of your way while you work just with the subpro
cess, giving it the context that you wish. A new subprocess has
only permanent symbols and logical names: $STATUS, $SEVERITY,
SYS$INPUT, SYS$OUTPUT, SYS$COMMAND, SYS$ERROR, SYS$DISK, and TT,
but not SYS$LOGIN. You must explicitly give it the context you
want it to have. Run it through your LOGIN.COM or the LQGALL.COM
in the SYS$MANAGER directory. Then run it through this command
procedure. You will be prompted to name the subprocess. The
name you pick must be unique within your UIC group. If it al
ready exists, you will be prompted again. Then the subprocess
prompts you with the name that you gave it. <RETURN> sleeps it.
CTRL/Y wakes it and all other sleeping processes up, including
the main process. Yo u can return ~ei ther process or subprocess to

Dig i tal Educationa1 Se rv ices
Technical Repo rt No. 1~

page 17

its normal "$" prompt the DeL EXIT or STOP command. You can stop
a subprocess from within with the DeL LOGOUT command in the
subprocess or from above (the creator process) with STOP "sub
process" (the process name). (Watch the case of the letters in
subprocess name it makes a difference.)

ver:='f$ver(~)

$START:

Loop deletes
symbols p1-pS
Check til done
Wakes you up
prompt wi th its
a process image

prompts with process name
sleeps process if no input
keeps it prompting

'f$ver(~)

if "' 'f$10gica1("SYS$INPUT") "'.nes."' 'f$10gica1("TT") '" -
then ass/user' f$10gica1("TT") sys$input-

! for interactive image
! 'f$ver (ver$)
! shuts verify off
! the interactive loop

LOOP: pS=pS+1
delete /symbo1 p'pS
if "' 'pS'".nes."" then goto LOOP
on contY then goto $

The last line will make the (sub)process
name but will also unfortunately destroy

$: inquire $ ""f$proc()'"
if $.eqs. "" then wait 21
on severe_error then goto $

$ SBPC :== run sys$system:10ginout /input='f$log("TT")' -
/output='f$log("TT")' ! the subprocess will have no name

$ if '" 'f$proc() '".nes."" then goto LOOP ! now name it
$ RETRY: on error then goto RETRY ! try again to name it
$ write sys$output "Please name your subprocess"
$ assign /user sys$command sys$input ! so image can prompt
$ run sys$system:setname changes process name
$
$
$
$
$
$
$
$
$
$
$
$
$

$
$ '$
$ ver$: =
$ goto $

Appendix B

SUBPROCESS WINDOWING

Modify the directory specification "Ll " for MPC in the second
line after START: so that this command procedure file resides
there and you can write in that directory. (If you name this
file ".COM" then "@MPC" will run it.)

1. Run the main process through this command procedure.

2. Use the command "SUBP" to create a subprocess.

3. Run the subprocess through this command procedure, but
specify the window size and location as follows:

Digital Educational Services
Te c h n i cal Repo r t No. HI

page 18

a. Use CONTROL/Y to get
process, e.g., "@MPC:
the sc reen.

the attention of the main
2 3" for the second third of

b. Use "GET", "LET", or "STOP" with the subprocess
name to:

• GET to that subprocess and suppress the
others,

• LET that subprocess prompt and not suppress
the others, or

• STOP that subprocess (or use "LOGOUT" in the
sub process) •

You may also use OCL commands in the main or
subprocess. X or EXIT will return any subprocess
to the "$" prompt. CLEAR will clear the screen.

, f$ver (ver$)

ENABLING FILES FOR THE USER
get the user's
UIC and extract
the user number.
(the second part)

RENAME: on error then goto RENAME ! you must rename it
write sys$output "Pick any name for your subprocess."
assign/user sysScommand sysSinput 1 so image can prompt
run sys$system:setname 1 changes process name

ver:='f$ver(0} 1 MPC:.COM for VT100 subprocesses
$START: 1 SYMBOLS AND LOGICALS FOR SUBPROCESS CONTROL
$ X := "exit l'f$ver(ver$}"
$ if "' 'f$log("MPC"} "' .ne s , "[1"

then assign (] MPC
if p I .eq. "" then goto MAIN 1 for the main process
if "" f$ proc () '" .nes. "" then goto NEXT 1al ready has name

$
$
$
$
$
$
$
$
$ NEXT: cl r: ="<ESC> [H<ESC> (J <ESC> (l; 24 r " 'f$ver (0)
$ CLEAR:="write sys$output clr" 1 will clear the screen
$
$1 WINDOW FORMATS FOR MULTIPLE SUBPROCESSES
S header := -

"' f$pro()' = 'f$use()' ""in"" 'f$dir()' ""at"" 'f$tim() '"
$ if ''''p2'" .eqs. "" then p2 = 1 1 want whole screen
$ bot=24*pl/p2 1 bottom of window
$ rng=24/p2 1 size of window
$ top=bot-rng+2 1 top of window
$ hdr=top-l 1 header location
$1 top='top bot='bot rng='rng hdr='hdr -THIS sums is up
S
$1 USER UIC INDIVIDUALIZES THE
S ui c : = 'f$ user ()
$ comma = 'fSlocate(",",uic)+l
$ bracket = 'fSlocate("]",uic}-comma
$ uic := 'f$ext(comma,bracket,uicl
$

Dig i tal Educa tional Se rv ices
Technical Repo r t No. 10

page 19

to ",
<ESC> [0 im"
to ",
<ESC> [A r m"

cleans up the
symbol s pl-pS

! ' f$ver (ver$)

window control 'f$ver(0)

the enabling file does not
exist so check again •••

V .- "".-

wait 0:00:01
goto CHECK

open /read /error=wait file MPC:'f$process() .'UiC'il
close file ! the enabling file exists
goto $! so goto the process prompt

currentheader := 'header
on control y then goto $
if '" 'f$logical(ltSYS$INPUT") "'.nes."' 'f$logica("TT") '"

then ass 'f$logical("TT") sys$input !'f$ver(0)
wr sys$output "<ESC>["hdr'~lf<ESC>rli7m",

"<ESC>[2K "currentheader'<ESC>[0im",
"<ESC>[' 'toP'i "bot'r<ESC>["bot'i1f<ESC>[A
inquire $ ""f$process()'"
if $.eqs. "" then goto $
on error then goto $
'$!' f$ver(temp_verify_state)
temp verify state := 'f$ver(0)
wr sys$output ""

level-l DCL $ LOOP for output

LOOP: pS=pS+l
delete /symbol p'pS
if "' 'pS'".nes."" then goto LOOP!

$

$

$
$
$
$
$
$! CREATES ENABLING FILE AND HEADER INFORMATION
$DCL:create/protection=(w:rwed) MPC: 'f$process() .'UiC'il
$ currentheader:= 'header !'f$ver(A)
$ wr sys$output "<ESC>~"top'~"bot'r<ESC>["hdr'ilf"
$ wr sys$output "<ESC>[0iK"
$ wr sys$output "<ESC>[1i7m<ESC>'3 Welcome

"subprocess "f$ pro c () ,
wr sys$output "<ESC>[li7m<ESC>'4 Welcome

"subprocess' 'f$proc()'
wr sys$output "<ESC>[0iK"s

$
$!
$
$ $:
$
$

$
$
$
$
$
$
$
$CHECK:
$
$
s
$WAIT:
$

**
**

process control only

:= RUN SYS$SYSTEM:LOGINOUT /INPUT='F$LOG("TT")' -
/OUTPUT='F$LOG ("TT") , !
show process /sub ! lists the subprocesses
directory MPC:*.'uic' ! shows which can prompt
inquire $ "What do you want to do? (HELP available)"
if '" 'f$extract(0,3,$) "' .e qs , "GET" then goto GET
if ''''f$extract(0,3,$)'" .eqs. "LET" then goto LET

$! The following part is for the main
$
$ MAIN: on control y then goto MAIN
$ H*ELP:= goto HELP
$ SUBP

$
$
$ INQM:
$
$

Dig i tal Ed ucational Se rv ices
Technical Repo rt No. H'

pag e 20

$
$
$ GET:
$ LET:

$

, $
wa i t 21
delete MPC:*.'uic'i*
create/protection=(w:rwed) -

MPC:'f$extract(3,9,q) .'uic'
goto CHECK

