
CREATING GRAPHIC DISPLAYS ON NON-GRAPHIC TERMINALS

Technical Report No.5

August 1979

DIGITAL EQUIPMENT CORPORAlION
EDUCAllONAl SERVICES

12 Crosby Drive
Bedford Massachusetts 01730

This Technical Report may be copied
for non-commercial purposes with
credit to the authors and Digital
Equipment Corporation.

CREATING GRAPHIC DISPLAYS ON NON-GRAPHICS TERMINALS

Ken Moreau and Jesse M. Heines

ABSTRACT

Graphic displays are an important tool for helping students visu
alize concepts presented by computer-based training materials.
Many current terminals have limited graphic capabilities, but
very few have complementary firmware or software to make those
capabilities easily accessible to the instructional programmer.
One solution to this problem is presented in this paper. An
interactive system for creating graphic displays is described,
and its use by DigitalIs Computer-Based Course Development Group
is discussed.

NOTE

The software described in this Technical
Report is not a "product" of Digital Equip
ment Corporation and is not available for
sale. It is simply a technique for creating
graphic displays on non-graphic terminals.

This paper was presented at the 1980 Conference of the Associa
tion for the Development of Computer-based Instructional Systems
in Washington, D.C.

Digital Educational Services
Technical Report No.5

THE PROBLEM

page 1

Digital Equipment Corporation's Computer-Based Course Development
Group is developing a computer-assisted instruction (CAl) course
that must run on two different types of video terminals: the
VT52, which is in wide use among DEC customers, and the newer
VT100, which has more sophisticated display capabilities. Nei
ther of these is a full " g r a phics terminal". However, the course
designers wished to use some fairly extensive graphics, including
direct cursor addressing, the drawing of boxes, blocks of text,
animation of text, and complicated erasing and refreshing of
selected portions of the screen. To make programming of these
functions easier, we developed a simple tool for creating graphic
displays.

Both the VT52 and VT100 terminals can perform the above actions
by means of "escape sequences", which are streams of ASCII char
acters preceded by the ESCape character (decimal character number
27 in the ASCII character set). When the computer initiates an
escape sequence, for instance, by executing a special PRINT
statement in a BASIC program, the terminal will take the action
specified rather than printing the characters in the escape
sequence on the screen. For example, escape sequences can be
used to move the cursor to a specified location, erase part or
all of the screen, and print special graphics characters.

Every special action has a unique escape sequence, and these may
vary from one terminal to another. On the VT52 for example, the
escape sequence to place the cursor at the 10th row and 15th
column is:

<ESC>Y)-

where <ESC> denotes the escape character. On the VT100, which
adheres to the ANSI standard escape sequences, the same result is
accomplished by the escape sequence:

<ESC>[10;15H

The VT100 also has capabilities that the VT52 lacks, such as bold
and blinking characters, double height and double width lines,
and reverse video.

Producing the instruction required on both terminals by coding
the text and escape sequences into the instructional program is
like trying to program in three languages simultaneously: the
authoring language, VT52 escape sequences, and VT100 escape
sequences. Also, CAl programs require huge amounts of text and
graphics to explain and demonstrate the subject matter. The
space that a single program can use is limited in any computer,
but especially so on mini- and microcomputers. If highly graphic
CAl programs are required to run on small machines, the instruc-

Digital Educational Services
Technical Report No.5

page 2

tion must be broken down into literally dozens of programs just
to make them fit into the memory available. The control of these
programs is complex, but more importantly from our point of view,
passing control from one program to another takes an unacceptable
period of time, leading to student dissatisfaction with the
product.

OUR SOLUTION

We needed a tool that course developer could use to develop the
displays needed to present a concept without requiring extensive
training and the memorization of escape sequences. Our solution
was to create a set of interpretive programs called DRAW. These
programs incorporate high-level commands which are translated
into the appropriate escape sequences. The commands are compar
atively simple to remember, so the course developers can concen
trate on the instructional value of various displays rather than
the difficulty in programming them. Sample commands are shown in
Table 1.

Since each terminal has different characteristics, the VT52
graphics editor simulates actions on the VT52 that may be primi
tives on the VT100 whenever possible. For example, the VT100 has
an escape sequence to erase from the beginning of a line to the
current cursor position. This primitive does not exist on the
VT52, but the action is simulated by printing spaces from the
beginning of the line to the current cursor position. The VT52
action is slower, but it produces the same result. The important
point is that both the VT100 and the VT52 actions are initiated
by a command of the form:

.ebl (R,C)

which erases from row R column 1 to row R column C. Commands
that are specific to the VT100 and that cannot be simulated, such
as ".ron" to turn reverse video mode on, are simply ignored by
the VT52 editor.

The DRAW approach to creating graphic displays has another advan
tage: the graphics information is stored separately from the CAl
control programs. This allows the instructional programs to be
smaller, and allows more program space to be devoted to complex
answer judging and routing.

Digital Educational Services
Technical Report No.5

Table 1

SAMPLE DRAW COMMANDS

page 3

-.

\
i

Command

.at (12,26)

.cen (24,40) DRAW

.box (10,12) (18,52)

.lin (5,4,35,r)

.ani "DRAW" (15,6,12,ur)

.txb (8,20)

.ron

.rof

Action

position the cursor at line 12
column 26

center the word "DRAW" on line 24
around column 40

draw a box with its upper left
corner ~line 10 column 12 and its
lower right corner at line 18
column 52

draw a line that extends from line 5
column ~5 spaces to the right

animate the word "DRAW" by moving it
from row 15 column 6, 12 spaces up
and to the right

begin a text block at row 8 column
20 (the first text line that follows
will begin at row 8 column 20, the
second one at row 9 column 20, the
third at row 10 column 20, etc.,
until another DRAW command is
encountered)

turn reverse video mode on (all
succeeding characters printed will
be displayed as dark characters on a
light background)

turn reverse video mode off

Digital Educational Services
Technical Report No.5

THE EVOLUTION OF GRAPHICS DISPLAYS

Creating Graphics Command Source Files

page 4

Graphic displays may be built with an interactive graphics
editor, or files of graphic commands may be created with the
normal system text editor. We have a different graphics editor
for every terminal type that we use. All of these editors use
the same command set, the same syntax, and accept the same
graphic command source files as input. The only difference (as
far as the course deveIopers are concerned) is the type of
terminal on which the editor is being used.

The output of the graphics editors are graphics command source
files. These files contain the source code of the DRAW system
displays, and are completely compatible between all graphic
editors. That is, any source file may be processed by any edi
tor, regardless of whether it was created using that editor. As
mentioned previously, some DRAW commands may be simulated or even
ignored if they are not applicable to the terminal currently
being used, but these commands will not generate errors and will
not be deleted from the source code.

The source files consist of both DRAW commands and text. All
DRAW commands start with a period as the first character on the
line. All other lines are interpreted as text and are simply
plotted on the screen at the current cursor position. Thus, a
source file might consist of the following:

.box (3,15) (5,23)

.at (4,17) DRW52

.box (7,14) (9,23)
•at (8 , 16) 0 RW 10 0
.ron
.txb (11,11)
Interactive

Graphics
Editors

.rof

This source file would generate the display shown in Figure 1.

Source files are named according to the convention counnn.FRM.
"cou" denotes a three-letter course code. For our project we
have chosen the name EDT. "nnn" is the number of the display,
from 000 to 999. 1l.FRMll is a fixed file extension used for all
graphics command source files.

The graphics editors are highly interactive. When DRAW commands
or text lines are entered, these actions cause immediate change
on the user's screen. The editors also provide three types of
editing commands:

Digital Educational Services
Technical Report No.5

page 5

• character and line mode editing commands such as @INSERT,
@REPLACE, and @SUBSTITUTE),

• file manipulation commands such as @OLD, @NEW, and @SAVE,
and

• graphics manipulation commands such as @MOVE and @REPLOT.

The editing commands are differentiated from DRAW commands and
text lines by the presence of an @ sign as their first character.
Using the editing commands, graphics command source files can be
read into memory, edited, executed, and saved as the course
developer desires. The course developer can list and execute all
or part of any display desired, edit the display, and then list
or execute the result.

Translating Graphics Command Source Files

When the the final versions of the graphics command source files
are created, they are submitted to the graphics translators. The
translators compile the source files into ASCII streams which are
stored in random access files on disk. Like the graphics
editors, there is a translator program for each type of terminal.

I DRW52 I, ,

I DRWlee I
:; nte~ad i,YE"<

t;;'- ,G'(!lp!if.Ii:~:;;
:r;".< - Ed 11 I)'('s'-'

Figure 1

DISPlAY GaERATED FRfJt
SAHPLE GRAPHICS COHMAND SOURCE FILE

Digital Educational Services
Technical Report No.5

page 6

The translators are very similar in principle to the graphics
editors, but instead of presenting the effects of each command on
the screen, the translators store them on disk for later access.
The ASCII streams created by the translators contain all of the
escape sequences necessary to perform the actions specified in
the graphics command source files.

The translator programs produce two types of random access files:

• library files, which contain the ASCII streams that
actually format the screen and display the graphic data,
and

• key files, which provide numeric indices to the library
files, indicating the starting and ending record numbers
for each display.

There is one library file and one key file for each type of
terminal in the system.

The relationships between all of the steps discussed thus far are
shown in Figure 2.

CALLING GRAPHICS DISPLAYS FROM
INSTRUCTIONAL PROGRAMS

The instructional control programs determine what type of termi
nal the student in running on at this moment, and access the
corresponding random access files produced by the translators.
In this way, the instructional lessons do not have to change for
each terminal type on the system; they simply access the proper
library and key files.

Presentation of each display is accomplished by a modular subpro
gram that is simply inserted into the instructional control pro
gram. The subroutine is called by the instructional lesson, with
the number of a library display to be placed on the student's
screen. This number corresponds to the number of a graphics
command source file. For example, if the source file to be
displayed is EDT123.FRM, the number passed to the graphics sub
routine is 123. This calling number is used to reference the key
file and look up the starting and ending record numbers of the
display in the library file. The graphics subroutine then simply
prints the appropriate records from the library file, and the
display is shown to the student.

This interaction is shown graphically in Figure 3, where the
numbers labelling each step indicate the following actions:

Digital Educational Services
Technical Report No.5

page 7

I Dmi52 h
~ caunnn.FRH

I DRW100 r---J

cou52.L1B
+

cou52.KEY

cou1M.L1B
+

cou1ee.kEY

Interactive
Graphics
Editors

Graphics
COMMand

Source File

Source
File

Translators

Libra~
and K~
Files

Figure 2

THE EVOlUTION OF GRAPHICS DISPLAYS

CAl
Control

File PrograM

•KEY __1.~isPIO!f_rJito
III Displ~ NuMber :0.. Griphic

.. l)ispl~ Starting and F

Subroutine .. Escape
0ooooooסס 00

Ending Record NuMbers ... Sequences ooססooסס0 00

III Graphic Student's
Data TerMinal

counnn

File
counnn.LIB

Figure 3

CALLING GRAPHICS DISPLAYS FROH INSTRUCTIONAl. PROGRAHS

Digital Educational Services
Technical Report No.5

page 8

(1) The graphic subroutine is called with a display number.

(2) The KEY file is referenced by the display number.

(3) The library starting and ending record numbers for the
display are determined.

(4) Graphic data is read from the library file.

(5) graphic data is printed to the student's terminal.

THE DRAW SYSTEM

The DRAW system is currently being used by Digital's Computer
Based Course Development Group to produce a CAl course on the DEC
Standard Editor, EDT. We have found that using it enables the
course developers to bring up complex displays quickly and easi
ly, and enables the instructional programs to be devoted to more
complex feedback and personalization of instruction.

