Javadoc Comments

Table of contents

N 2 0 0] PSRRI 3
28 911 0o U Tox 1 o o VNSRRI 3
3 .COMMENLING [N JAVAL......eiiiiieiie ettt et e et e e et eesbeeaaeesreeenreens 4
3.1 The Need for COMMENTS........cccoiiiiiririere et nbe e ens 4
A 000 0 0107 01 KS] [ T (V7= ST 5
321 SINGIE LINE COMMIENLS......cceiiiieiisie et sttt st b e e 5
3.22 MUIti LiN€ COMMENES......ecouiieieiieiesieesieeie e e eee et ee et esee s e nsesneesneeneeeneesneenes 5

FN - 7= (o ol 0] 1 11 0= 01 KSR 5
4.1 The Format of JavadoC COMMENTS.........ccoouiiiriiiniereee et 5
= o ] o1 oSS 7
4.2.1 TRETIFSE SENEENCE.....ccuiitieieeieie ettt ettt b e b 7
422 The use Of the KCOUE> Ta0.......ccvrieieieie e 7
4.2.3 OMISSION Of PArENTNESIS.........coiiiiiier s 7
4.2.4 Method descriptions begin With averb............oco e 7
4.2.5 AVOId BDDIEVIALION. .....c.eiiiestieie et ee s 8

F I = Y7o (o ol I L 8
I U 11 0o G = o OSSN 8
s | (o= I USSR PP 8
R AV £ o] I 1o RSO P RSP US PPN 9
VR R DIC o (< 0z (o = o R S 9
R e = 0 0= (< S 1= R 9
R (= (1 T =" OSSR 9
A o= o o I 1o OSSR 9

4.3.8 SEE ClASS TAT. .. e veveverterieeiiei ettt sttt b ettt b e bt n e et re b nne s 10




Javadoc Comments

4.3.9 SEE ClasS MEMDES TaJ.....ccciieeiieie ettt et 10
4.3.10 General Order Of TagS......ccoviiieiiiiiie ettt 10
4.3.11 Ordering MUItIPIE TagS.....ccueiueeieiie ettt 10
4.3.12 TAG SUMIMEIY .....eiiiuriieitieeeiteeeeieeesteeesseeesse e e ssseesssseessseeesbaeesseeesbeeesaseessnseesssneeens 11

SR TSI 7= (Y=o (oo I o S 11
5.1 RUNNING The JaVadogt TOOL.........coiiiiiiiee e 11
5.2 A0VANCEI OPLIONS........eiitieiiiiesieeie e stee et e et eesbeete e e sseese e e sbeesesneesseesesneesaens 12
5.2.1 Specifying an OVErVIEW FilE..........cooi i 12
5.2.2 SPECITYING VISIDHITY ...oceiieeeee e 12
5.2.3 SPECIfYing @ SOUICE Path..........ccceiieiieeciee e e 13
5.2.4 SpecCifying an OULPUL DIFECIONY ........cooeiueririerinierieeee e 13
5.2.5 AULNOT & VEISION TaGS. .. cieiieiiieite sttt 13
5.2.6 Generating a Package SUMMAIY..........c.ooeeiiiieierie e e 13
5.3 EXAMPIE OULPUL. ...t et e et e e sneeenreenneas 14
B SUMIMIBIY ...ttt st sttt s e st e e s st e e e st e e st e e sb e e e st e e e abe e e eabee e eabee e nabe e e nabeeenaneeennnes 14
7 EXEICISE SEL...ceieee ettt bt st naenae s 14
7L MUIIPIE CHOICE.......eeieeeieiecee bbb 14
2 == (01 =< 16
7.3 Programming EXEICISES.......c.oiuiiiriiriesieeie ettt sttt e e sae e sne e 16

Page 2



Javadoc Comments

1. Jargon

Deprecated

An API item that is considered obsolete and on its way out, usually in favor of
something better. Usually, though the item may have been originally included as
part of an API, the use of it is no longer advised, and slowly support for the item
is phased out.

Documentation

Instructions that come with a software program, which may include paper or
electronic manuals, README files, and online help.

Fatal Error

An error that causes a program to stop executing. See Error and Application
Failure.

HTML

Hypertext Markup Language, The language used to create World Wide Web
pages, with hyperlinks and markup for text formatting.

Internet

A network of computer networks which operates world-wide using a common set
of communications protocols.

Member

Class members are items that belong to that class, usually methods and
variables and also nested classes.

Options

Alternatives or choices, often refers to settings or preferences in a program that
may be set according to the users preference or taste.

Tag

A tag is a marker embedded in a document that indicates the purpose or function
of the element. Each element has a beginning tag and an end tag.

Throw

In Java terms, an exception is said to be thrown if the exception is raised. A
method may throw an exception if an error occurs in its processing.

Visibility

The accessibility of methods and instance variables to other classes and
packages, through the use of access modifiers: public, protected, package or
private.

2. Introduction

In this chapter we will look at the importance of commenting source code and discuss Java's
own method of performing source code documentation using the Javadoc Tool that comes

Page 3



Javadoc Comments

bundles with the Java Development Kit.

The Javadoc Tool uses simple Java comments with a number of meta tags to provide meta
information about the source code. It then parses these comments and uses this information
to produce an API that can be used by developers to see the functionality of the source code.
It isimportant to understand how to write these comments in order to produce a good API.

We will also look at how to run the Javadoc Tool to produce the APl and look at some of its
more advanced options like sending output to a specific directory, showing private and
protected class members and what text should occur in the Window Title of the browser.

Y ou can get the Javadoc Tool @ [bundled with your JDK, if you have the JDK installed you
have the javadoc tool].

3. Commenting In Java

Commenting in Java can take two forms, typical comments that can be found in numerous
other programming languages like C/C++; namely single line comments and multiline
comments. Then there are Javadoc comments that are unique to the Javalanguage. In this
section we will discuss why commenting is needed and look at how to provide the standard
single line and multi-line commentsin Java.

3.1. The Need for Comments

There are anumber of reasons for including comments in source coe, even though many
newer software development methodologies refrain from their use, comments do have their
place in source code. Some of the reasons for using comments are:

« Often comments are added at the start of each source file to give a description of what
source the file contains and copyright information.

« Thefields and methods of a class are often given brief comments that describe their
purpose and what they do.

« Complex code is often commented heavily to make it clearer and easier to understand.

The goal in commenting code isto make it possible for the reader to understand what the
code does and how it achieves that. There are generally two schools of thought on this, the
first says that the more comments the better, however the other school of thought believes
that more comments just clutter the code and make it difficult to read.

Commenting code is therefore a fine balance, you should only provide comments where
absolutely necessary and keep them brief. If code istoo complex to understand you should
consider revising the code to make it clearer or ssimpler, unlessit isimpossible to do so or
you have very good reasons not to do so.

Page 4



Javadoc Comments

3.2. Commentsin Java

3.2.1. Single Line Comments

Single line comments are used to add a very brief comment within some code, often along or
complex method. They begin with adouble forward slash (/ / ) and end with the end of line
or carriage return. As an example consider:

private static String name = "Quys"; //The name to print

3.2.2. Multi Line Comments

If acomment is going to span across more than one line then a multi-line comment should be
used. These are often useful for providing more in-depth information. They start with a
forward slash followed by an asterisk (/ * ) and end with an asterisk followed by aforward
dlash (*/ ). Consider:

/* Getter method provides public access in read only fashion.
This function returns the port nunber. */
int getPort() { ... }

4. Javadoc Comments

Javadoc Comments are specific to the Java language and provide a means for a programmer
to fully document his/ her source code as well as providing a means to generate an
Application Programmer Interface (API) for the code using the javadoc tool that is bundled
with the JDK. These comments have a special format which we will discussin this section
and then in the following section we will look at how to use the javadoc tool to generate an
API.

4.1. The Format of Javadoc Comments

A Javadoc comment precedes any class, interface, method or field declaration and is similar
to a multi-line comment except that it starts with aforward slash followed by two atserisks
(/ **). The basic format is a description followed by any number of predefined tags. The
entrie comment is indented to align with the source code directly beneath it and it may
contain any valid HTML. Generally paragraphs should be separated or designated with the
<p> tag. As an example consider:

/**

Page 5



Javadoc Comments

* A Container is an object that contains other objects.
* @ut hor Trevor MIler
*

@ersion 1.2
* @ince 0.3
*/
public abstract class Container {
/**
* Create an enpty contai ner
*/

protected Container() { }
/**

* Return the nunber of elenments contained in this container
* @eturn The nunber of objects contained

*/

public abstract int count();

/**

* Clear all elements fromthis container.
* This renoves all contained objects.

*/

public abstract void clear();

/**

* Accept the given visitor to visit all objects contained.
* @aramvisitor The visitor to accept

*/

public abstract void accept(final Visitor visitor);

/**

* Return an iterator over all objects conatined.
* @eturn An iterator over all objects

*/

public abstract Iterator iterator();

/**

* Determ ne whether this container is enpty or not.

* @eturn <CODE>true</CODE> if the container is enpty:
* <CODE>count == 0</ CODE>, <CODE>fal se</ CODE>

* ot herw se

*/
publ i c bool ean i sEnmpty() {
return (this.count() == 0);
/**

* Determ ne whether this container is full
* @eturn <CODE>true</CODE> if conatiner is full,
* <CODE>f al se</ CODE> ot herwi se
*/
public boolean isFull () {
return fal se;
}

Page 6



Javadoc Comments

}

We will now discuss the descriptions of a Javadoc comment first before looking at the
different tags and their uses.
4.2. Descriptions

The description should give a concise summary of the item being commented. It should be
written in simple and clear English using correct spelling and grammar. Punctuation is
required. There are some important style guidelines to bear in mind:

4.2.1. Thefirst sentence

The first sentence of the description is the most important part of the entire description. It
should be a short and concise summary of the item being commented. Thisis due to the fact
that the Javadoc tool copies the first sentence to the appropriate class or package summary
page, which implies that the first sentence should be compact and can stand on its own.

Take alook at the example above again and you'll see that the first sentence is a brief
descriptive summary of each item.
4.2.2. The use of the <code> tag

The use of the <code> tag is greatly encouraged and should be used for all Java keywords,
names and code samples. you'll notice this in the comments of the last two methods of the
classin the example above.

4.2.3. Omission of parenthesis

When referring to a method that has no parameters or a method which has multiple forms
(method overloading) it is acceptable and even encouraged to simply omit the parenthesis.
Consider the following example:

The <code>add</code> nethod inserts itenms into the vector

Thisisthe correct way of doing it as opposed to the incorrect way in the next example:

The <code>add()</code> nethod inserts itens into the vector

4.2.4. Method descriptions begin with averb

Page 7



Javadoc Comments

A method usually defines a certain behaviour or operation; because of thisit usually signals
an action that is best described by a verb.

Det ermi ne whether this container is enpty or not.
As opposed to:

This method is used to deterni ne whether this container is enpty or not.

4.2.5. Avoid abbreviation

One final word on style guidelines is to avoid the use of abbreviation at all costs as this
renders comments unclear. Instead of using an abbreviation you should use its expanded
form. This appliesto all abbreviations.

This is al so known as. ..
Instead of using:

AKA ...

4.3. Javadoc Tags

The Javadoc tags are used to provide important or essential meta information about the code.
Consider the @wut hor tag in the class comment for the example given above, it gives
important information as to who the author of the code is. Each tag has a specific format
which we will now look at.

4.3.1. Author Tag

Form: @ut hor nane

Used Where: Interface and Class comments.

Used For: Giving the names of the authors of the source code. Y ou should use the full name
of the author or "unascribed" when the author is unknown. Authors are listed in
chronological order, with the creator of the class or interface being listed first.

4.3.2. SinceTag

Form: @i nce version

Page 8



Javadoc Comments

Used Where: Interface and Class comments.

Used For: Indicates the version of the source code that this item was introduced. It is usually
just aversion umber but may also contain a specific date.

4.3.3. Version Tag

Form: @er si on description

Used Where: Interface and Class comments.

Used For: Describes the current version number of the source code. Thisis often simply a
version number including only the major and minor number and not build number. Some
instances also include a date.

4.3.4. Deprecated tag

Form: @lepr ecat ed

Used Where: Interface, class and method comments.

Used For: Used to indicated that an item is amember of the deprecated API. Deprecated
items should not be used and are merely included for backwards compatibility.

4.3.5. Parameter Tag

Form: @ar am nanme description

Used Where: Method comments.

Used For: Describes a method parameter. The name should be the formal parameter name.
the description should be a brief one line description of the parameter.

4.3.6. Return Tag

Form: @eturn description

Used Where: Method comments.

Used For: Describe the return value from a method with the exception of void methods and
con tructors.

4.3.7. Exception Tag

Form: @ hrows exception description

Page 9



Javadoc Comments

Used Where: Method comments.

Used For: Indicates any exceptions that the method might throw and the possible reasons for
this exception occurring.

4.3.8. SeeClass Tag

Form: @ee cl assnane

Used Where: Any item being commented.

Used For: If another class may help provide clarity thistag may be used to provide alink to
that class.

4.3.9. See ClassMember Tag

Form: @ee cl assnane#nenber

Used Where: Any item being commented.

Used For: If another class's members may provide additional clarity thistag can be used to
link to that class's member.

4.3.10. General Order of Tags

The general order in which the tags occur is as follows:

@author
@version
@param
@return
@throws
@see
@since
@deprecated

4.3.11. Ordering Multiple Tags

There are three tags that may occur more than once, thay are:

e @author
*  @param
e @throws

As mentioned above, the author tag should be listed in chronological order, with the creator

Page 10



Javadoc Comments

of the class or interface listed first. Thisimplies that the last person to work on the source
code will have their name appended to the bottom of the list of author tags.

A method may have numerous parameters. In this case, the param tags should be defined in
the exact same order as the parameters are declared in the method declaration.

A method may throw numerous exceptions, in such a caseit is customary to list the
exceptions in aphabetical order, athough in some cases they may be listed according to
severity, the most severe exception is listed first.

4.3.12. Tag Summary

Image: Tag Summary

5. The Javadoc T ool

The Javadoc tool comes bundled with the Java JDK and is used to produce an APl similar to
the Java API. It parses a set of Java source files gathering the information contained within
the actual source code as well as the Javadoc comments and uses tis to produce a set of
HTML pages documenting the classes, interfaces, methods and fields.

5.1. Running The Javadoc T ool

The Javadoc tool is run from the command line much like the java compiler. To invokeit you
simply usethej avadoc command and pass a number of command line arguments to the
program.

The format for running the tool is:
j avadoc [options] [packagenanes] [sourcefiles] [classnanmes] [@il es]

At its most simplest invocation you would call the Javadoc program supplying a Java source
file:

j avadoc MyC ass. java

Alternatively you could give alist of files or specify all Java source code using the wild-card
(*) symbol:

j avadoc *.java

Thiswill produce the HTML output in the same directory as the source code. This might not

Page 11



Javadoc Comments

be what you want and you should invest some time learning about the tool's more advanced
options.

5.2. Advanced Options

5.2.1. Specifying an Overview File

The default Javadoc page usually displays alist of packages and should also include an
overview of the software the API isfor. Thisoverview is generated using an overview file.

The contents of the Overview fileis standard HTML and is ssmply copied to the appropriate
page by the Javadoc tool. All you need to do is create the HTML page and put in anything
you want as the overview. When you run the Javadoc tool, you specify the overview file
using the - over vi ewoption:

j avadoc -overvi ew overview htm MC ass.java
An example overview is:

<HTM_>
<BODY>

My Overvi ew
</ BODY>

</ HTML>

5.2.2. Specifying Visbility

By default, the Javadoc tool will document both public and protected members of an API.
Sometimes you might want to show the private members as well or only show public
members. In order to do this you can tell the Javadoc tool which member accessibility level
to document.

There are actually four types of visibility that you can specify:

e public - Will naturally only document public members, private and protected members
are not shown.

« protected - Documents both public and protected members and not private members.
Thisisthe default.

« package - Similar as protected but also shows package classes and members.

« private - Displays al members whether they are private or not.

An example of using this method:

Page 12



Javadoc Comments

j avadoc -private Myd ass.java

5.2.3. Specifying a Sour ce Path

Often your source code will beinasr ¢ directory, especialy if you have used packages as
explained in the previous chapter. In order to tell the Javadoc tool where to find the source
code you need to use the - sour cepat h option.

The interesting thing about this option is that you need to speify the actual package name if
using packages. So assume we are using the example in the previous chapter where the
Mydl ass. j avafileisinthesr ¢/ com nyconpany/ nypr oj ect directory then you
can use:

j avadoc -sourcepath ./src com myconpany. mypr oj ect

5.2.4. Specifying an Output Directory

Until this point, all the output from the Javadoc tool has gone into the current directory. You
might want it to go into an alternative directory. Usually the api isfound in the docs/ api
directory. To specify thiswe use the - d option:

javadoc -d ./docs/api -sourcepath ./src com nyconpany. nyproj ect

The resulting output will beinthedocs/ api directory. you'll notice that these directories
are automatically created for you, you do not need to create them.

5.2.5. Author & Version Tags

By default, Javadoc does nothing with the author and version tags. Y ou need to explicitly
specify that it should use these in the generated API. Doing so is simple:

j avadoc -author -version -d ./docs/api -sourcepath ./src
com myconpany. nypr oj ect

5.2.6. Generating a Package Summary

Y ou may wish to also have a package summary generated. Thisis nothing more than a
simple HTML file much like the overview file except that it is placed within the package
directory; for example, if you use the package com nyconpany. nmypr oj ect , then the
package overview will be placed within the mypr oj ect directory. The file must be named
package. ht m

Page 13



Javadoc Comments

Y ou do not need to specify to Javadoc that it should use a package overview, it will
automatically detect the file and useit if it exists.

An example:

<HTM.>

<BODY>

My Package Overview
</ BODY>

</ HTML>

5.3. Example Output

As an example, I'm going to use al the options in the previous section to generate an APl and
show the resulting output. The Javadoc command used:

j avadoc -author -version -private -overview overview htm -d ./docs/ api
-sourcepath ./src com nyconpany. mypr oj ect

The resulting output is:

Image: Javadoc Output

6. Summary

Javadoc comments can be used to document all java source code. Comments follow a
standard format consisting of a description followed by block tags. The first sentence of the
description should be clear and concise asit is used in the summary of the API item.

The Javadoc tool can be used to parse doc comments in source code and generate an API
from them. The Javadoc tool is flexible and powerful enough to document any number of
source files and packages.

7. Exercise Set

7.1. Multiple Choice
1. Multi line comments begin and end with curly braces"{" and "} ".

1. true
2. fase
2. Doc comments precede:

1. Classes

Page 14



Javadoc Comments

2. Interfaces
3. Methods
4. Fields
5. All the above
3. Doc comments can include HTML tags.

1. true
2. fase
4. Thefirst sentence should be?

1. Concise
2. Clear
3. Brief
4. A summary
5. All the above
5. Abbreviation is allowed in doc comments.

1. true
2. fase
6. Which tag cannot be used multiple times?

1. @author
2. @param
3. @throws
4. @returns
7. Thedefault visibility option of Javadoc is?

1. Public
2. Protected
3. Package
4. Private
8. The output directory of Javadoc can be changed using?
1 d
2. -directory
3. -output
9. To run Javadoc on a set of filesin adirectory named "src", the command that can be used
is?
1. javadoc *.java
2. javadoc -sourcepath ./src *.java
3. javadoc ./src/*.java
10.To run Javadoc on two packages named "nephila.maculata’ and "nephila.cruentata” in the
directories g:\packages\M acul ata and g:\packages\Cruentata you would use:

1. javadoc -d ./docs/api -sourcepath ./src nephila

Page 15



Javadoc Comments

2. javadoc -d ./docs/api -sourcepath g:\packages
nephi | a. macul at a nephil a. cruentata

3. javadoc -d ./docs/api -sourcepath
g: \ packages\ Macul at a\ src; g: \ packages\ Cruent ata\ src
nephi | a. macul at a nephil a. cruentata

7.2. Exercises

1. Find out about some other options to the Javadoc tool in the documentation provided with
the API.

7.3. Programming Exer cises

1. Find some source code that you have written, preferably a set of classesin a package and
add Javadoc comments to this source.

2. Now run the Javadoc tool on this source code to generate an API. If there are any errors,
fix them and then run Javadoc again.

Page 16



	1 Jargon
	2 Introduction
	3 Commenting In Java
	3.1 The Need for Comments
	3.2 Comments in Java
	3.2.1 Single Line Comments
	3.2.2 Multi Line Comments


	4 Javadoc Comments
	4.1 The Format of Javadoc Comments
	4.2 Descriptions
	4.2.1 The first sentence
	4.2.2 The use of the <code> tag
	4.2.3 Omission of parenthesis
	4.2.4 Method descriptions begin with a verb
	4.2.5 Avoid abbreviation

	4.3 Javadoc Tags
	4.3.1 Author Tag
	4.3.2 Since Tag
	4.3.3 Version Tag
	4.3.4 Deprecated tag
	4.3.5 Parameter Tag
	4.3.6 Return Tag
	4.3.7 Exception Tag
	4.3.8 See Class Tag
	4.3.9 See Class Member Tag
	4.3.10 General Order of Tags
	4.3.11 Ordering Multiple Tags
	4.3.12 Tag Summary


	5 The Javadoc Tool
	5.1 Running The Javadoc Tool
	5.2 Advanced Options
	5.2.1 Specifying an Overview File
	5.2.2 Specifying Visibility
	5.2.3 Specifying a Source Path
	5.2.4 Specifying an Output Directory
	5.2.5 Author & Version Tags
	5.2.6 Generating a Package Summary

	5.3 Example Output

	6 Summary
	7 Exercise Set
	7.1 Multiple Choice
	7.2 Exercises
	7.3 Programming Exercises


